Aquatic product culture water quality prediction method based on deep learning

The invention discloses an aquatic product culture water quality prediction method based on deep learning. By building a deep learning network having three-layer limited Boltzmann machine (RBM) and a layer of BP neural network, water quality sample data is used for training three limited Boltzmann m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GAO YAN, LIU LIJUE, CHEN BAIFAN, WANG BIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GAO YAN
LIU LIJUE
CHEN BAIFAN
WANG BIN
description The invention discloses an aquatic product culture water quality prediction method based on deep learning. By building a deep learning network having three-layer limited Boltzmann machine (RBM) and a layer of BP neural network, water quality sample data is used for training three limited Boltzmann machines by specific dispersion learning for extracting the deep characteristics of the water quality sample data, deep learning network parameter is optimized through BP, so that training on the deep learning network is complete. The trained deep learning network is used to the current water quality sample data, and the water quality prediction can be obtained on an output layer. The method can obtain the characteristic relevance between different water quality factors, and the water quality prediction accuracy is increased. 本发明公开了种基于深度学习的水产养殖水质预测方法。通过搭建个具有三层受限玻尔兹曼机(RBM)和层BP神经网络的深度学习网络。以水质样本数据利用对比散度学习对三个受限玻尔兹曼机进行训练抽取水质样本数据的深度特征,再通过BP对深度学习网络参数进行优化,从而完成深度学习网络的训练。将训练好的深度学习网络应用到当前水质样本数据,在输出层便可获得对水质的预测。本发明可以获得各类不同水质因子之间
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN106198909A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN106198909A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN106198909A3</originalsourceid><addsrcrecordid>eNqNijEKAjEUBbexEPUO3wMIuwhiymVRrLayX77JUwPZJCY_iLc3hQewGoaZZTP2r8JiNcUUTNFCujgpCfRmQaIanZVPrTBWiw2eZsgzGLpxhqHqBojkwMlb_1g3izu7jM2Pq2Z7Pl2Hyw4xTMiRNTxkGsauPXTqqFrV7_95vlTvNwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Aquatic product culture water quality prediction method based on deep learning</title><source>esp@cenet</source><creator>GAO YAN ; LIU LIJUE ; CHEN BAIFAN ; WANG BIN</creator><creatorcontrib>GAO YAN ; LIU LIJUE ; CHEN BAIFAN ; WANG BIN</creatorcontrib><description>The invention discloses an aquatic product culture water quality prediction method based on deep learning. By building a deep learning network having three-layer limited Boltzmann machine (RBM) and a layer of BP neural network, water quality sample data is used for training three limited Boltzmann machines by specific dispersion learning for extracting the deep characteristics of the water quality sample data, deep learning network parameter is optimized through BP, so that training on the deep learning network is complete. The trained deep learning network is used to the current water quality sample data, and the water quality prediction can be obtained on an output layer. The method can obtain the characteristic relevance between different water quality factors, and the water quality prediction accuracy is increased. 本发明公开了种基于深度学习的水产养殖水质预测方法。通过搭建个具有三层受限玻尔兹曼机(RBM)和层BP神经网络的深度学习网络。以水质样本数据利用对比散度学习对三个受限玻尔兹曼机进行训练抽取水质样本数据的深度特征,再通过BP对深度学习网络参数进行优化,从而完成深度学习网络的训练。将训练好的深度学习网络应用到当前水质样本数据,在输出层便可获得对水质的预测。本发明可以获得各类不同水质因子之间</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161207&amp;DB=EPODOC&amp;CC=CN&amp;NR=106198909A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161207&amp;DB=EPODOC&amp;CC=CN&amp;NR=106198909A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GAO YAN</creatorcontrib><creatorcontrib>LIU LIJUE</creatorcontrib><creatorcontrib>CHEN BAIFAN</creatorcontrib><creatorcontrib>WANG BIN</creatorcontrib><title>Aquatic product culture water quality prediction method based on deep learning</title><description>The invention discloses an aquatic product culture water quality prediction method based on deep learning. By building a deep learning network having three-layer limited Boltzmann machine (RBM) and a layer of BP neural network, water quality sample data is used for training three limited Boltzmann machines by specific dispersion learning for extracting the deep characteristics of the water quality sample data, deep learning network parameter is optimized through BP, so that training on the deep learning network is complete. The trained deep learning network is used to the current water quality sample data, and the water quality prediction can be obtained on an output layer. The method can obtain the characteristic relevance between different water quality factors, and the water quality prediction accuracy is increased. 本发明公开了种基于深度学习的水产养殖水质预测方法。通过搭建个具有三层受限玻尔兹曼机(RBM)和层BP神经网络的深度学习网络。以水质样本数据利用对比散度学习对三个受限玻尔兹曼机进行训练抽取水质样本数据的深度特征,再通过BP对深度学习网络参数进行优化,从而完成深度学习网络的训练。将训练好的深度学习网络应用到当前水质样本数据,在输出层便可获得对水质的预测。本发明可以获得各类不同水质因子之间</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKAjEUBbexEPUO3wMIuwhiymVRrLayX77JUwPZJCY_iLc3hQewGoaZZTP2r8JiNcUUTNFCujgpCfRmQaIanZVPrTBWiw2eZsgzGLpxhqHqBojkwMlb_1g3izu7jM2Pq2Z7Pl2Hyw4xTMiRNTxkGsauPXTqqFrV7_95vlTvNwA</recordid><startdate>20161207</startdate><enddate>20161207</enddate><creator>GAO YAN</creator><creator>LIU LIJUE</creator><creator>CHEN BAIFAN</creator><creator>WANG BIN</creator><scope>EVB</scope></search><sort><creationdate>20161207</creationdate><title>Aquatic product culture water quality prediction method based on deep learning</title><author>GAO YAN ; LIU LIJUE ; CHEN BAIFAN ; WANG BIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN106198909A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>GAO YAN</creatorcontrib><creatorcontrib>LIU LIJUE</creatorcontrib><creatorcontrib>CHEN BAIFAN</creatorcontrib><creatorcontrib>WANG BIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GAO YAN</au><au>LIU LIJUE</au><au>CHEN BAIFAN</au><au>WANG BIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Aquatic product culture water quality prediction method based on deep learning</title><date>2016-12-07</date><risdate>2016</risdate><abstract>The invention discloses an aquatic product culture water quality prediction method based on deep learning. By building a deep learning network having three-layer limited Boltzmann machine (RBM) and a layer of BP neural network, water quality sample data is used for training three limited Boltzmann machines by specific dispersion learning for extracting the deep characteristics of the water quality sample data, deep learning network parameter is optimized through BP, so that training on the deep learning network is complete. The trained deep learning network is used to the current water quality sample data, and the water quality prediction can be obtained on an output layer. The method can obtain the characteristic relevance between different water quality factors, and the water quality prediction accuracy is increased. 本发明公开了种基于深度学习的水产养殖水质预测方法。通过搭建个具有三层受限玻尔兹曼机(RBM)和层BP神经网络的深度学习网络。以水质样本数据利用对比散度学习对三个受限玻尔兹曼机进行训练抽取水质样本数据的深度特征,再通过BP对深度学习网络参数进行优化,从而完成深度学习网络的训练。将训练好的深度学习网络应用到当前水质样本数据,在输出层便可获得对水质的预测。本发明可以获得各类不同水质因子之间</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN106198909A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
TESTING
title Aquatic product culture water quality prediction method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GAO%20YAN&rft.date=2016-12-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN106198909A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true