QRS wave starting point end point positioning method based on regularized least square regression learning

A QRS wave starting point end point positioning method based on regularized least square regression learning comprises the following steps: building a series of detection methods, detection criterions and threshold parameters according to function quadrature decomposition idea in the Hilbert space a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FU LINGJIAN, ZHU YUKUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FU LINGJIAN
ZHU YUKUI
description A QRS wave starting point end point positioning method based on regularized least square regression learning comprises the following steps: building a series of detection methods, detection criterions and threshold parameters according to function quadrature decomposition idea in the Hilbert space and the regularized least square regression learning algorithm, thus finally detecting the QRS wave and positioning the starting point and end point; carrying out inner product operation on an electrocardiosignal and a gauss function first order derived function so as to obtain an inner product sequence; selecting the reproducing kernel Hilbert space formed by the gauss kernel function as the approximation space of the regularized least square regression learning algorithm; using a real symmetric matrix square root decomposition method solving algorithm to obtain the novel inner product sequence. 种基于正则化最小二乘回归学习的QRS波起点终点定位方法,该方法是:基于函数在Hilbert空间中正交分解的思想结合正则化最小二乘回归学习算法,构建系列检测方法、检测准则和阈值参数,最终检测出QRS波并定位出其起点、终点位置;首先将心电信号与高
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN106063704A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN106063704A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN106063704A3</originalsourceid><addsrcrecordid>eNqNi0sKwkAQRLNxIeod2gMIkUhcS1BcCX72oTWVOBJnxumOgqc3AzmAq_q8qnHyOJ7O9OE3SJSDGtuQd8YqwVaD806MGmcje0LvrqIrCypylgKaruVgvn1swaIkr44DIggQ6W-xD_E8TUY1t4LZoJNkvtteiv0C3pUQzzdYaFkclmme5tk6XW2yfzY_wWdBkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>QRS wave starting point end point positioning method based on regularized least square regression learning</title><source>esp@cenet</source><creator>FU LINGJIAN ; ZHU YUKUI</creator><creatorcontrib>FU LINGJIAN ; ZHU YUKUI</creatorcontrib><description>A QRS wave starting point end point positioning method based on regularized least square regression learning comprises the following steps: building a series of detection methods, detection criterions and threshold parameters according to function quadrature decomposition idea in the Hilbert space and the regularized least square regression learning algorithm, thus finally detecting the QRS wave and positioning the starting point and end point; carrying out inner product operation on an electrocardiosignal and a gauss function first order derived function so as to obtain an inner product sequence; selecting the reproducing kernel Hilbert space formed by the gauss kernel function as the approximation space of the regularized least square regression learning algorithm; using a real symmetric matrix square root decomposition method solving algorithm to obtain the novel inner product sequence. 种基于正则化最小二乘回归学习的QRS波起点终点定位方法,该方法是:基于函数在Hilbert空间中正交分解的思想结合正则化最小二乘回归学习算法,构建系列检测方法、检测准则和阈值参数,最终检测出QRS波并定位出其起点、终点位置;首先将心电信号与高</description><language>chi ; eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161102&amp;DB=EPODOC&amp;CC=CN&amp;NR=106063704A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161102&amp;DB=EPODOC&amp;CC=CN&amp;NR=106063704A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FU LINGJIAN</creatorcontrib><creatorcontrib>ZHU YUKUI</creatorcontrib><title>QRS wave starting point end point positioning method based on regularized least square regression learning</title><description>A QRS wave starting point end point positioning method based on regularized least square regression learning comprises the following steps: building a series of detection methods, detection criterions and threshold parameters according to function quadrature decomposition idea in the Hilbert space and the regularized least square regression learning algorithm, thus finally detecting the QRS wave and positioning the starting point and end point; carrying out inner product operation on an electrocardiosignal and a gauss function first order derived function so as to obtain an inner product sequence; selecting the reproducing kernel Hilbert space formed by the gauss kernel function as the approximation space of the regularized least square regression learning algorithm; using a real symmetric matrix square root decomposition method solving algorithm to obtain the novel inner product sequence. 种基于正则化最小二乘回归学习的QRS波起点终点定位方法,该方法是:基于函数在Hilbert空间中正交分解的思想结合正则化最小二乘回归学习算法,构建系列检测方法、检测准则和阈值参数,最终检测出QRS波并定位出其起点、终点位置;首先将心电信号与高</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0sKwkAQRLNxIeod2gMIkUhcS1BcCX72oTWVOBJnxumOgqc3AzmAq_q8qnHyOJ7O9OE3SJSDGtuQd8YqwVaD806MGmcje0LvrqIrCypylgKaruVgvn1swaIkr44DIggQ6W-xD_E8TUY1t4LZoJNkvtteiv0C3pUQzzdYaFkclmme5tk6XW2yfzY_wWdBkA</recordid><startdate>20161102</startdate><enddate>20161102</enddate><creator>FU LINGJIAN</creator><creator>ZHU YUKUI</creator><scope>EVB</scope></search><sort><creationdate>20161102</creationdate><title>QRS wave starting point end point positioning method based on regularized least square regression learning</title><author>FU LINGJIAN ; ZHU YUKUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN106063704A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>FU LINGJIAN</creatorcontrib><creatorcontrib>ZHU YUKUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FU LINGJIAN</au><au>ZHU YUKUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>QRS wave starting point end point positioning method based on regularized least square regression learning</title><date>2016-11-02</date><risdate>2016</risdate><abstract>A QRS wave starting point end point positioning method based on regularized least square regression learning comprises the following steps: building a series of detection methods, detection criterions and threshold parameters according to function quadrature decomposition idea in the Hilbert space and the regularized least square regression learning algorithm, thus finally detecting the QRS wave and positioning the starting point and end point; carrying out inner product operation on an electrocardiosignal and a gauss function first order derived function so as to obtain an inner product sequence; selecting the reproducing kernel Hilbert space formed by the gauss kernel function as the approximation space of the regularized least square regression learning algorithm; using a real symmetric matrix square root decomposition method solving algorithm to obtain the novel inner product sequence. 种基于正则化最小二乘回归学习的QRS波起点终点定位方法,该方法是:基于函数在Hilbert空间中正交分解的思想结合正则化最小二乘回归学习算法,构建系列检测方法、检测准则和阈值参数,最终检测出QRS波并定位出其起点、终点位置;首先将心电信号与高</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN106063704A
source esp@cenet
subjects DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title QRS wave starting point end point positioning method based on regularized least square regression learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FU%20LINGJIAN&rft.date=2016-11-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN106063704A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true