Electricity customer short-term load demand forecasting method and device

The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu Fang, Li Hongfa, Hao Qingli, Liu Yuxi, Huang Qiucen, Lu Yaozong, Cheng Huafu, Fang Hongwang, Liu Jian, Zhao Jiakui, Ou Yanghong
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Liu Fang
Li Hongfa
Hao Qingli
Liu Yuxi
Huang Qiucen
Lu Yaozong
Cheng Huafu
Fang Hongwang
Liu Jian
Zhao Jiakui
Ou Yanghong
description The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each time for each date group obtained through clustering; and finally, searching a historical similar day matched with a date to be forecasted, and obtaining a load forecasting result of the date to be forecasted according to the load forecasting model of the date group where the historical similar day belongs. According to the scheme, a parallel computation framework is utilized, and electricity load demands of mass electricity customers can be forecasted simultaneously; and requirements of mass data analysis speed and prediction accuracy are met. 本发明提供了种用电客户短期负荷需求预测方法,通过对采集到的每个用电客户的历史日负荷曲线数据按照日期进行聚类,然后对聚类得到的日期群体建立每个时刻点的负荷预测模型,最后查找与待测日期匹配的历史相似日,根据所述历史相似日所属日期群体的负荷预测模型得到所述待测日期的负荷预测结果。本方案利用并行计算框架,能够同时对海量用电客户的用电负荷需求进行预测,满足
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN105844371A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN105844371A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN105844371A3</originalsourceid><addsrcrecordid>eNqNykEKwjAQRuFsXIh6h_EABUsrupVS0Y0r9yVM_tpAkinJKHh7ETyAqwcfb2mufQBr9uz1TfwsKhGZyiRZK0WOFMQ6cog2ORolg21Rnx4UoZM4-rLDyzPWZjHaULD5dWW25_7eXSrMMqDMlpGgQ3erd_tj2zaH-tT883wAFoY0_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electricity customer short-term load demand forecasting method and device</title><source>esp@cenet</source><creator>Liu Fang ; Li Hongfa ; Hao Qingli ; Liu Yuxi ; Huang Qiucen ; Lu Yaozong ; Cheng Huafu ; Fang Hongwang ; Liu Jian ; Zhao Jiakui ; Ou Yanghong</creator><creatorcontrib>Liu Fang ; Li Hongfa ; Hao Qingli ; Liu Yuxi ; Huang Qiucen ; Lu Yaozong ; Cheng Huafu ; Fang Hongwang ; Liu Jian ; Zhao Jiakui ; Ou Yanghong</creatorcontrib><description>The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each time for each date group obtained through clustering; and finally, searching a historical similar day matched with a date to be forecasted, and obtaining a load forecasting result of the date to be forecasted according to the load forecasting model of the date group where the historical similar day belongs. According to the scheme, a parallel computation framework is utilized, and electricity load demands of mass electricity customers can be forecasted simultaneously; and requirements of mass data analysis speed and prediction accuracy are met. 本发明提供了种用电客户短期负荷需求预测方法,通过对采集到的每个用电客户的历史日负荷曲线数据按照日期进行聚类,然后对聚类得到的日期群体建立每个时刻点的负荷预测模型,最后查找与待测日期匹配的历史相似日,根据所述历史相似日所属日期群体的负荷预测模型得到所述待测日期的负荷预测结果。本方案利用并行计算框架,能够同时对海量用电客户的用电负荷需求进行预测,满足</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160810&amp;DB=EPODOC&amp;CC=CN&amp;NR=105844371A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160810&amp;DB=EPODOC&amp;CC=CN&amp;NR=105844371A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Liu Fang</creatorcontrib><creatorcontrib>Li Hongfa</creatorcontrib><creatorcontrib>Hao Qingli</creatorcontrib><creatorcontrib>Liu Yuxi</creatorcontrib><creatorcontrib>Huang Qiucen</creatorcontrib><creatorcontrib>Lu Yaozong</creatorcontrib><creatorcontrib>Cheng Huafu</creatorcontrib><creatorcontrib>Fang Hongwang</creatorcontrib><creatorcontrib>Liu Jian</creatorcontrib><creatorcontrib>Zhao Jiakui</creatorcontrib><creatorcontrib>Ou Yanghong</creatorcontrib><title>Electricity customer short-term load demand forecasting method and device</title><description>The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each time for each date group obtained through clustering; and finally, searching a historical similar day matched with a date to be forecasted, and obtaining a load forecasting result of the date to be forecasted according to the load forecasting model of the date group where the historical similar day belongs. According to the scheme, a parallel computation framework is utilized, and electricity load demands of mass electricity customers can be forecasted simultaneously; and requirements of mass data analysis speed and prediction accuracy are met. 本发明提供了种用电客户短期负荷需求预测方法,通过对采集到的每个用电客户的历史日负荷曲线数据按照日期进行聚类,然后对聚类得到的日期群体建立每个时刻点的负荷预测模型,最后查找与待测日期匹配的历史相似日,根据所述历史相似日所属日期群体的负荷预测模型得到所述待测日期的负荷预测结果。本方案利用并行计算框架,能够同时对海量用电客户的用电负荷需求进行预测,满足</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwjAQRuFsXIh6h_EABUsrupVS0Y0r9yVM_tpAkinJKHh7ETyAqwcfb2mufQBr9uz1TfwsKhGZyiRZK0WOFMQ6cog2ORolg21Rnx4UoZM4-rLDyzPWZjHaULD5dWW25_7eXSrMMqDMlpGgQ3erd_tj2zaH-tT883wAFoY0_A</recordid><startdate>20160810</startdate><enddate>20160810</enddate><creator>Liu Fang</creator><creator>Li Hongfa</creator><creator>Hao Qingli</creator><creator>Liu Yuxi</creator><creator>Huang Qiucen</creator><creator>Lu Yaozong</creator><creator>Cheng Huafu</creator><creator>Fang Hongwang</creator><creator>Liu Jian</creator><creator>Zhao Jiakui</creator><creator>Ou Yanghong</creator><scope>EVB</scope></search><sort><creationdate>20160810</creationdate><title>Electricity customer short-term load demand forecasting method and device</title><author>Liu Fang ; Li Hongfa ; Hao Qingli ; Liu Yuxi ; Huang Qiucen ; Lu Yaozong ; Cheng Huafu ; Fang Hongwang ; Liu Jian ; Zhao Jiakui ; Ou Yanghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN105844371A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu Fang</creatorcontrib><creatorcontrib>Li Hongfa</creatorcontrib><creatorcontrib>Hao Qingli</creatorcontrib><creatorcontrib>Liu Yuxi</creatorcontrib><creatorcontrib>Huang Qiucen</creatorcontrib><creatorcontrib>Lu Yaozong</creatorcontrib><creatorcontrib>Cheng Huafu</creatorcontrib><creatorcontrib>Fang Hongwang</creatorcontrib><creatorcontrib>Liu Jian</creatorcontrib><creatorcontrib>Zhao Jiakui</creatorcontrib><creatorcontrib>Ou Yanghong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu Fang</au><au>Li Hongfa</au><au>Hao Qingli</au><au>Liu Yuxi</au><au>Huang Qiucen</au><au>Lu Yaozong</au><au>Cheng Huafu</au><au>Fang Hongwang</au><au>Liu Jian</au><au>Zhao Jiakui</au><au>Ou Yanghong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electricity customer short-term load demand forecasting method and device</title><date>2016-08-10</date><risdate>2016</risdate><abstract>The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each time for each date group obtained through clustering; and finally, searching a historical similar day matched with a date to be forecasted, and obtaining a load forecasting result of the date to be forecasted according to the load forecasting model of the date group where the historical similar day belongs. According to the scheme, a parallel computation framework is utilized, and electricity load demands of mass electricity customers can be forecasted simultaneously; and requirements of mass data analysis speed and prediction accuracy are met. 本发明提供了种用电客户短期负荷需求预测方法,通过对采集到的每个用电客户的历史日负荷曲线数据按照日期进行聚类,然后对聚类得到的日期群体建立每个时刻点的负荷预测模型,最后查找与待测日期匹配的历史相似日,根据所述历史相似日所属日期群体的负荷预测模型得到所述待测日期的负荷预测结果。本方案利用并行计算框架,能够同时对海量用电客户的用电负荷需求进行预测,满足</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN105844371A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Electricity customer short-term load demand forecasting method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Liu%20Fang&rft.date=2016-08-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN105844371A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true