Electricity customer short-term load demand forecasting method and device
The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each t...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Liu Fang Li Hongfa Hao Qingli Liu Yuxi Huang Qiucen Lu Yaozong Cheng Huafu Fang Hongwang Liu Jian Zhao Jiakui Ou Yanghong |
description | The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each time for each date group obtained through clustering; and finally, searching a historical similar day matched with a date to be forecasted, and obtaining a load forecasting result of the date to be forecasted according to the load forecasting model of the date group where the historical similar day belongs. According to the scheme, a parallel computation framework is utilized, and electricity load demands of mass electricity customers can be forecasted simultaneously; and requirements of mass data analysis speed and prediction accuracy are met.
本发明提供了种用电客户短期负荷需求预测方法,通过对采集到的每个用电客户的历史日负荷曲线数据按照日期进行聚类,然后对聚类得到的日期群体建立每个时刻点的负荷预测模型,最后查找与待测日期匹配的历史相似日,根据所述历史相似日所属日期群体的负荷预测模型得到所述待测日期的负荷预测结果。本方案利用并行计算框架,能够同时对海量用电客户的用电负荷需求进行预测,满足 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN105844371A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN105844371A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN105844371A3</originalsourceid><addsrcrecordid>eNqNykEKwjAQRuFsXIh6h_EABUsrupVS0Y0r9yVM_tpAkinJKHh7ETyAqwcfb2mufQBr9uz1TfwsKhGZyiRZK0WOFMQ6cog2ORolg21Rnx4UoZM4-rLDyzPWZjHaULD5dWW25_7eXSrMMqDMlpGgQ3erd_tj2zaH-tT883wAFoY0_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electricity customer short-term load demand forecasting method and device</title><source>esp@cenet</source><creator>Liu Fang ; Li Hongfa ; Hao Qingli ; Liu Yuxi ; Huang Qiucen ; Lu Yaozong ; Cheng Huafu ; Fang Hongwang ; Liu Jian ; Zhao Jiakui ; Ou Yanghong</creator><creatorcontrib>Liu Fang ; Li Hongfa ; Hao Qingli ; Liu Yuxi ; Huang Qiucen ; Lu Yaozong ; Cheng Huafu ; Fang Hongwang ; Liu Jian ; Zhao Jiakui ; Ou Yanghong</creatorcontrib><description>The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each time for each date group obtained through clustering; and finally, searching a historical similar day matched with a date to be forecasted, and obtaining a load forecasting result of the date to be forecasted according to the load forecasting model of the date group where the historical similar day belongs. According to the scheme, a parallel computation framework is utilized, and electricity load demands of mass electricity customers can be forecasted simultaneously; and requirements of mass data analysis speed and prediction accuracy are met.
本发明提供了种用电客户短期负荷需求预测方法,通过对采集到的每个用电客户的历史日负荷曲线数据按照日期进行聚类,然后对聚类得到的日期群体建立每个时刻点的负荷预测模型,最后查找与待测日期匹配的历史相似日,根据所述历史相似日所属日期群体的负荷预测模型得到所述待测日期的负荷预测结果。本方案利用并行计算框架,能够同时对海量用电客户的用电负荷需求进行预测,满足</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160810&DB=EPODOC&CC=CN&NR=105844371A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160810&DB=EPODOC&CC=CN&NR=105844371A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Liu Fang</creatorcontrib><creatorcontrib>Li Hongfa</creatorcontrib><creatorcontrib>Hao Qingli</creatorcontrib><creatorcontrib>Liu Yuxi</creatorcontrib><creatorcontrib>Huang Qiucen</creatorcontrib><creatorcontrib>Lu Yaozong</creatorcontrib><creatorcontrib>Cheng Huafu</creatorcontrib><creatorcontrib>Fang Hongwang</creatorcontrib><creatorcontrib>Liu Jian</creatorcontrib><creatorcontrib>Zhao Jiakui</creatorcontrib><creatorcontrib>Ou Yanghong</creatorcontrib><title>Electricity customer short-term load demand forecasting method and device</title><description>The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each time for each date group obtained through clustering; and finally, searching a historical similar day matched with a date to be forecasted, and obtaining a load forecasting result of the date to be forecasted according to the load forecasting model of the date group where the historical similar day belongs. According to the scheme, a parallel computation framework is utilized, and electricity load demands of mass electricity customers can be forecasted simultaneously; and requirements of mass data analysis speed and prediction accuracy are met.
本发明提供了种用电客户短期负荷需求预测方法,通过对采集到的每个用电客户的历史日负荷曲线数据按照日期进行聚类,然后对聚类得到的日期群体建立每个时刻点的负荷预测模型,最后查找与待测日期匹配的历史相似日,根据所述历史相似日所属日期群体的负荷预测模型得到所述待测日期的负荷预测结果。本方案利用并行计算框架,能够同时对海量用电客户的用电负荷需求进行预测,满足</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwjAQRuFsXIh6h_EABUsrupVS0Y0r9yVM_tpAkinJKHh7ETyAqwcfb2mufQBr9uz1TfwsKhGZyiRZK0WOFMQ6cog2ORolg21Rnx4UoZM4-rLDyzPWZjHaULD5dWW25_7eXSrMMqDMlpGgQ3erd_tj2zaH-tT883wAFoY0_A</recordid><startdate>20160810</startdate><enddate>20160810</enddate><creator>Liu Fang</creator><creator>Li Hongfa</creator><creator>Hao Qingli</creator><creator>Liu Yuxi</creator><creator>Huang Qiucen</creator><creator>Lu Yaozong</creator><creator>Cheng Huafu</creator><creator>Fang Hongwang</creator><creator>Liu Jian</creator><creator>Zhao Jiakui</creator><creator>Ou Yanghong</creator><scope>EVB</scope></search><sort><creationdate>20160810</creationdate><title>Electricity customer short-term load demand forecasting method and device</title><author>Liu Fang ; Li Hongfa ; Hao Qingli ; Liu Yuxi ; Huang Qiucen ; Lu Yaozong ; Cheng Huafu ; Fang Hongwang ; Liu Jian ; Zhao Jiakui ; Ou Yanghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN105844371A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu Fang</creatorcontrib><creatorcontrib>Li Hongfa</creatorcontrib><creatorcontrib>Hao Qingli</creatorcontrib><creatorcontrib>Liu Yuxi</creatorcontrib><creatorcontrib>Huang Qiucen</creatorcontrib><creatorcontrib>Lu Yaozong</creatorcontrib><creatorcontrib>Cheng Huafu</creatorcontrib><creatorcontrib>Fang Hongwang</creatorcontrib><creatorcontrib>Liu Jian</creatorcontrib><creatorcontrib>Zhao Jiakui</creatorcontrib><creatorcontrib>Ou Yanghong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu Fang</au><au>Li Hongfa</au><au>Hao Qingli</au><au>Liu Yuxi</au><au>Huang Qiucen</au><au>Lu Yaozong</au><au>Cheng Huafu</au><au>Fang Hongwang</au><au>Liu Jian</au><au>Zhao Jiakui</au><au>Ou Yanghong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electricity customer short-term load demand forecasting method and device</title><date>2016-08-10</date><risdate>2016</risdate><abstract>The invention provides an electricity customer short-term load demand forecasting method. The method comprises the following steps: carrying out clustering on collected historical daily load curve data of electricity customers according to dates; then, establishing a load forecasting model at each time for each date group obtained through clustering; and finally, searching a historical similar day matched with a date to be forecasted, and obtaining a load forecasting result of the date to be forecasted according to the load forecasting model of the date group where the historical similar day belongs. According to the scheme, a parallel computation framework is utilized, and electricity load demands of mass electricity customers can be forecasted simultaneously; and requirements of mass data analysis speed and prediction accuracy are met.
本发明提供了种用电客户短期负荷需求预测方法,通过对采集到的每个用电客户的历史日负荷曲线数据按照日期进行聚类,然后对聚类得到的日期群体建立每个时刻点的负荷预测模型,最后查找与待测日期匹配的历史相似日,根据所述历史相似日所属日期群体的负荷预测模型得到所述待测日期的负荷预测结果。本方案利用并行计算框架,能够同时对海量用电客户的用电负荷需求进行预测,满足</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN105844371A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Electricity customer short-term load demand forecasting method and device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Liu%20Fang&rft.date=2016-08-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN105844371A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |