Improved battery SOC prediction method for RBF neural network

The invention discloses an improved battery SOC prediction method for an RBF neural network. First a power battery SOC prediction model is built through an RBF neural network method, then an output battery SOC of the neural network is used as an evaluation index to build an optimization model, and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang Yong, Tian Li, Li Congfei, Feng Zhimin, Lou Jie, Cao Anzhao, Wu Daolin
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Wang Yong
Tian Li
Li Congfei
Feng Zhimin
Lou Jie
Cao Anzhao
Wu Daolin
description The invention discloses an improved battery SOC prediction method for an RBF neural network. First a power battery SOC prediction model is built through an RBF neural network method, then an output battery SOC of the neural network is used as an evaluation index to build an optimization model, and an artificial fish swarm algorithm is adopted to perform optimization calculation on a width vector [delta]i and a center vector v of the neural network and a weight w of an output neuron. The neural network prediction method has the characteristics of high efficiency and low cost. 本发明公开了种改进的RBF神经网络的电池SOC预测方法,首先通过RBF神经网络方法建立动力电池SOC预测模型,然后以神经网络的输出电池SOC作为评价指标,建立个优化模型,采用人工鱼群算法分别对神经网络的宽度向量δ、中心向量v和输出神经元的权值w进行优化计算。神经网络预测方法具有效率高、成本低的特点。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN105823989A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN105823989A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN105823989A3</originalsourceid><addsrcrecordid>eNrjZLD1zC0oyi9LTVFISiwpSS2qVAj2d1YoKEpNyUwuyczPU8hNLcnIT1FIyy9SCHJyU8hLLS1KzAFSJeX5Rdk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORWoMt7Zz9DA1MLI2NLC0tGYGDUA6gkvyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Improved battery SOC prediction method for RBF neural network</title><source>esp@cenet</source><creator>Wang Yong ; Tian Li ; Li Congfei ; Feng Zhimin ; Lou Jie ; Cao Anzhao ; Wu Daolin</creator><creatorcontrib>Wang Yong ; Tian Li ; Li Congfei ; Feng Zhimin ; Lou Jie ; Cao Anzhao ; Wu Daolin</creatorcontrib><description>The invention discloses an improved battery SOC prediction method for an RBF neural network. First a power battery SOC prediction model is built through an RBF neural network method, then an output battery SOC of the neural network is used as an evaluation index to build an optimization model, and an artificial fish swarm algorithm is adopted to perform optimization calculation on a width vector [delta]i and a center vector v of the neural network and a weight w of an output neuron. The neural network prediction method has the characteristics of high efficiency and low cost. 本发明公开了种改进的RBF神经网络的电池SOC预测方法,首先通过RBF神经网络方法建立动力电池SOC预测模型,然后以神经网络的输出电池SOC作为评价指标,建立个优化模型,采用人工鱼群算法分别对神经网络的宽度向量δ、中心向量v和输出神经元的权值w进行优化计算。神经网络预测方法具有效率高、成本低的特点。</description><language>chi ; eng</language><subject>CALCULATING ; CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TOTRANSPORTATION ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE ; TESTING</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160803&amp;DB=EPODOC&amp;CC=CN&amp;NR=105823989A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160803&amp;DB=EPODOC&amp;CC=CN&amp;NR=105823989A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wang Yong</creatorcontrib><creatorcontrib>Tian Li</creatorcontrib><creatorcontrib>Li Congfei</creatorcontrib><creatorcontrib>Feng Zhimin</creatorcontrib><creatorcontrib>Lou Jie</creatorcontrib><creatorcontrib>Cao Anzhao</creatorcontrib><creatorcontrib>Wu Daolin</creatorcontrib><title>Improved battery SOC prediction method for RBF neural network</title><description>The invention discloses an improved battery SOC prediction method for an RBF neural network. First a power battery SOC prediction model is built through an RBF neural network method, then an output battery SOC of the neural network is used as an evaluation index to build an optimization model, and an artificial fish swarm algorithm is adopted to perform optimization calculation on a width vector [delta]i and a center vector v of the neural network and a weight w of an output neuron. The neural network prediction method has the characteristics of high efficiency and low cost. 本发明公开了种改进的RBF神经网络的电池SOC预测方法,首先通过RBF神经网络方法建立动力电池SOC预测模型,然后以神经网络的输出电池SOC作为评价指标,建立个优化模型,采用人工鱼群算法分别对神经网络的宽度向量δ、中心向量v和输出神经元的权值w进行优化计算。神经网络预测方法具有效率高、成本低的特点。</description><subject>CALCULATING</subject><subject>CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TOTRANSPORTATION</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD1zC0oyi9LTVFISiwpSS2qVAj2d1YoKEpNyUwuyczPU8hNLcnIT1FIyy9SCHJyU8hLLS1KzAFSJeX5Rdk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORWoMt7Zz9DA1MLI2NLC0tGYGDUA6gkvyA</recordid><startdate>20160803</startdate><enddate>20160803</enddate><creator>Wang Yong</creator><creator>Tian Li</creator><creator>Li Congfei</creator><creator>Feng Zhimin</creator><creator>Lou Jie</creator><creator>Cao Anzhao</creator><creator>Wu Daolin</creator><scope>EVB</scope></search><sort><creationdate>20160803</creationdate><title>Improved battery SOC prediction method for RBF neural network</title><author>Wang Yong ; Tian Li ; Li Congfei ; Feng Zhimin ; Lou Jie ; Cao Anzhao ; Wu Daolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN105823989A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TOTRANSPORTATION</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang Yong</creatorcontrib><creatorcontrib>Tian Li</creatorcontrib><creatorcontrib>Li Congfei</creatorcontrib><creatorcontrib>Feng Zhimin</creatorcontrib><creatorcontrib>Lou Jie</creatorcontrib><creatorcontrib>Cao Anzhao</creatorcontrib><creatorcontrib>Wu Daolin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang Yong</au><au>Tian Li</au><au>Li Congfei</au><au>Feng Zhimin</au><au>Lou Jie</au><au>Cao Anzhao</au><au>Wu Daolin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Improved battery SOC prediction method for RBF neural network</title><date>2016-08-03</date><risdate>2016</risdate><abstract>The invention discloses an improved battery SOC prediction method for an RBF neural network. First a power battery SOC prediction model is built through an RBF neural network method, then an output battery SOC of the neural network is used as an evaluation index to build an optimization model, and an artificial fish swarm algorithm is adopted to perform optimization calculation on a width vector [delta]i and a center vector v of the neural network and a weight w of an output neuron. The neural network prediction method has the characteristics of high efficiency and low cost. 本发明公开了种改进的RBF神经网络的电池SOC预测方法,首先通过RBF神经网络方法建立动力电池SOC预测模型,然后以神经网络的输出电池SOC作为评价指标,建立个优化模型,采用人工鱼群算法分别对神经网络的宽度向量δ、中心向量v和输出神经元的权值w进行优化计算。神经网络预测方法具有效率高、成本低的特点。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN105823989A
source esp@cenet
subjects CALCULATING
CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TOTRANSPORTATION
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC
GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE
TESTING
title Improved battery SOC prediction method for RBF neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wang%20Yong&rft.date=2016-08-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN105823989A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true