Spoken language evaluation method based on deep learning and spoken language evaluation system
The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of th...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YE XUECHAO KANG YURAN LI SUMEI ZHU XIAOFAN XU GANGFAN LI XINGUANG XU JIYOU YANG GUOQIANG MA XIAOCHUN WANG ZEKENG |
description | The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the intonation accuracy of the tested voice can be acquired; the voice emotion degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the emotion accuracy of the tested voice can be acquired; and the overall evaluation of the pronunciation quality of the whole sentence can be carried out by adopting the deep learning algorithm. By establishing the deep belief network mode, the DBN(deep belief network) model can be used for the spoken English test, and the evaluation of the pronunciation of the spoken English can be more comprehensive and more accurate, and at the same time, the deep learning algorithm has the higher evaluation accuracy by comparing with the emotion evaluation of the sh |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN105741832A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN105741832A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN105741832A3</originalsourceid><addsrcrecordid>eNrjZIgLLsjPTs1TyEnMSy9NTE9VSC1LzClNLMnMz1PITS3JyE9RSEosTk1RAPJTUlMLFHJSE4vyMvPSFRLzUhSKcWsuriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBqbmJoYWxkaOxsSoAQBaNDze</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Spoken language evaluation method based on deep learning and spoken language evaluation system</title><source>esp@cenet</source><creator>YE XUECHAO ; KANG YURAN ; LI SUMEI ; ZHU XIAOFAN ; XU GANGFAN ; LI XINGUANG ; XU JIYOU ; YANG GUOQIANG ; MA XIAOCHUN ; WANG ZEKENG</creator><creatorcontrib>YE XUECHAO ; KANG YURAN ; LI SUMEI ; ZHU XIAOFAN ; XU GANGFAN ; LI XINGUANG ; XU JIYOU ; YANG GUOQIANG ; MA XIAOCHUN ; WANG ZEKENG</creatorcontrib><description>The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the intonation accuracy of the tested voice can be acquired; the voice emotion degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the emotion accuracy of the tested voice can be acquired; and the overall evaluation of the pronunciation quality of the whole sentence can be carried out by adopting the deep learning algorithm. By establishing the deep belief network mode, the DBN(deep belief network) model can be used for the spoken English test, and the evaluation of the pronunciation of the spoken English can be more comprehensive and more accurate, and at the same time, the deep learning algorithm has the higher evaluation accuracy by comparing with the emotion evaluation of the sh</description><language>chi ; eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160706&DB=EPODOC&CC=CN&NR=105741832A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160706&DB=EPODOC&CC=CN&NR=105741832A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YE XUECHAO</creatorcontrib><creatorcontrib>KANG YURAN</creatorcontrib><creatorcontrib>LI SUMEI</creatorcontrib><creatorcontrib>ZHU XIAOFAN</creatorcontrib><creatorcontrib>XU GANGFAN</creatorcontrib><creatorcontrib>LI XINGUANG</creatorcontrib><creatorcontrib>XU JIYOU</creatorcontrib><creatorcontrib>YANG GUOQIANG</creatorcontrib><creatorcontrib>MA XIAOCHUN</creatorcontrib><creatorcontrib>WANG ZEKENG</creatorcontrib><title>Spoken language evaluation method based on deep learning and spoken language evaluation system</title><description>The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the intonation accuracy of the tested voice can be acquired; the voice emotion degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the emotion accuracy of the tested voice can be acquired; and the overall evaluation of the pronunciation quality of the whole sentence can be carried out by adopting the deep learning algorithm. By establishing the deep belief network mode, the DBN(deep belief network) model can be used for the spoken English test, and the evaluation of the pronunciation of the spoken English can be more comprehensive and more accurate, and at the same time, the deep learning algorithm has the higher evaluation accuracy by comparing with the emotion evaluation of the sh</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgLLsjPTs1TyEnMSy9NTE9VSC1LzClNLMnMz1PITS3JyE9RSEosTk1RAPJTUlMLFHJSE4vyMvPSFRLzUhSKcWsuriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBqbmJoYWxkaOxsSoAQBaNDze</recordid><startdate>20160706</startdate><enddate>20160706</enddate><creator>YE XUECHAO</creator><creator>KANG YURAN</creator><creator>LI SUMEI</creator><creator>ZHU XIAOFAN</creator><creator>XU GANGFAN</creator><creator>LI XINGUANG</creator><creator>XU JIYOU</creator><creator>YANG GUOQIANG</creator><creator>MA XIAOCHUN</creator><creator>WANG ZEKENG</creator><scope>EVB</scope></search><sort><creationdate>20160706</creationdate><title>Spoken language evaluation method based on deep learning and spoken language evaluation system</title><author>YE XUECHAO ; KANG YURAN ; LI SUMEI ; ZHU XIAOFAN ; XU GANGFAN ; LI XINGUANG ; XU JIYOU ; YANG GUOQIANG ; MA XIAOCHUN ; WANG ZEKENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN105741832A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>YE XUECHAO</creatorcontrib><creatorcontrib>KANG YURAN</creatorcontrib><creatorcontrib>LI SUMEI</creatorcontrib><creatorcontrib>ZHU XIAOFAN</creatorcontrib><creatorcontrib>XU GANGFAN</creatorcontrib><creatorcontrib>LI XINGUANG</creatorcontrib><creatorcontrib>XU JIYOU</creatorcontrib><creatorcontrib>YANG GUOQIANG</creatorcontrib><creatorcontrib>MA XIAOCHUN</creatorcontrib><creatorcontrib>WANG ZEKENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YE XUECHAO</au><au>KANG YURAN</au><au>LI SUMEI</au><au>ZHU XIAOFAN</au><au>XU GANGFAN</au><au>LI XINGUANG</au><au>XU JIYOU</au><au>YANG GUOQIANG</au><au>MA XIAOCHUN</au><au>WANG ZEKENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Spoken language evaluation method based on deep learning and spoken language evaluation system</title><date>2016-07-06</date><risdate>2016</risdate><abstract>The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the intonation accuracy of the tested voice can be acquired; the voice emotion degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the emotion accuracy of the tested voice can be acquired; and the overall evaluation of the pronunciation quality of the whole sentence can be carried out by adopting the deep learning algorithm. By establishing the deep belief network mode, the DBN(deep belief network) model can be used for the spoken English test, and the evaluation of the pronunciation of the spoken English can be more comprehensive and more accurate, and at the same time, the deep learning algorithm has the higher evaluation accuracy by comparing with the emotion evaluation of the sh</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN105741832A |
source | esp@cenet |
subjects | ACOUSTICS MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Spoken language evaluation method based on deep learning and spoken language evaluation system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YE%20XUECHAO&rft.date=2016-07-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN105741832A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |