Spoken language evaluation method based on deep learning and spoken language evaluation system

The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YE XUECHAO, KANG YURAN, LI SUMEI, ZHU XIAOFAN, XU GANGFAN, LI XINGUANG, XU JIYOU, YANG GUOQIANG, MA XIAOCHUN, WANG ZEKENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YE XUECHAO
KANG YURAN
LI SUMEI
ZHU XIAOFAN
XU GANGFAN
LI XINGUANG
XU JIYOU
YANG GUOQIANG
MA XIAOCHUN
WANG ZEKENG
description The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the intonation accuracy of the tested voice can be acquired; the voice emotion degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the emotion accuracy of the tested voice can be acquired; and the overall evaluation of the pronunciation quality of the whole sentence can be carried out by adopting the deep learning algorithm. By establishing the deep belief network mode, the DBN(deep belief network) model can be used for the spoken English test, and the evaluation of the pronunciation of the spoken English can be more comprehensive and more accurate, and at the same time, the deep learning algorithm has the higher evaluation accuracy by comparing with the emotion evaluation of the sh
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN105741832A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN105741832A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN105741832A3</originalsourceid><addsrcrecordid>eNrjZIgLLsjPTs1TyEnMSy9NTE9VSC1LzClNLMnMz1PITS3JyE9RSEosTk1RAPJTUlMLFHJSE4vyMvPSFRLzUhSKcWsuriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBqbmJoYWxkaOxsSoAQBaNDze</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Spoken language evaluation method based on deep learning and spoken language evaluation system</title><source>esp@cenet</source><creator>YE XUECHAO ; KANG YURAN ; LI SUMEI ; ZHU XIAOFAN ; XU GANGFAN ; LI XINGUANG ; XU JIYOU ; YANG GUOQIANG ; MA XIAOCHUN ; WANG ZEKENG</creator><creatorcontrib>YE XUECHAO ; KANG YURAN ; LI SUMEI ; ZHU XIAOFAN ; XU GANGFAN ; LI XINGUANG ; XU JIYOU ; YANG GUOQIANG ; MA XIAOCHUN ; WANG ZEKENG</creatorcontrib><description>The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the intonation accuracy of the tested voice can be acquired; the voice emotion degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the emotion accuracy of the tested voice can be acquired; and the overall evaluation of the pronunciation quality of the whole sentence can be carried out by adopting the deep learning algorithm. By establishing the deep belief network mode, the DBN(deep belief network) model can be used for the spoken English test, and the evaluation of the pronunciation of the spoken English can be more comprehensive and more accurate, and at the same time, the deep learning algorithm has the higher evaluation accuracy by comparing with the emotion evaluation of the sh</description><language>chi ; eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160706&amp;DB=EPODOC&amp;CC=CN&amp;NR=105741832A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160706&amp;DB=EPODOC&amp;CC=CN&amp;NR=105741832A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YE XUECHAO</creatorcontrib><creatorcontrib>KANG YURAN</creatorcontrib><creatorcontrib>LI SUMEI</creatorcontrib><creatorcontrib>ZHU XIAOFAN</creatorcontrib><creatorcontrib>XU GANGFAN</creatorcontrib><creatorcontrib>LI XINGUANG</creatorcontrib><creatorcontrib>XU JIYOU</creatorcontrib><creatorcontrib>YANG GUOQIANG</creatorcontrib><creatorcontrib>MA XIAOCHUN</creatorcontrib><creatorcontrib>WANG ZEKENG</creatorcontrib><title>Spoken language evaluation method based on deep learning and spoken language evaluation system</title><description>The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the intonation accuracy of the tested voice can be acquired; the voice emotion degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the emotion accuracy of the tested voice can be acquired; and the overall evaluation of the pronunciation quality of the whole sentence can be carried out by adopting the deep learning algorithm. By establishing the deep belief network mode, the DBN(deep belief network) model can be used for the spoken English test, and the evaluation of the pronunciation of the spoken English can be more comprehensive and more accurate, and at the same time, the deep learning algorithm has the higher evaluation accuracy by comparing with the emotion evaluation of the sh</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgLLsjPTs1TyEnMSy9NTE9VSC1LzClNLMnMz1PITS3JyE9RSEosTk1RAPJTUlMLFHJSE4vyMvPSFRLzUhSKcWsuriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBqbmJoYWxkaOxsSoAQBaNDze</recordid><startdate>20160706</startdate><enddate>20160706</enddate><creator>YE XUECHAO</creator><creator>KANG YURAN</creator><creator>LI SUMEI</creator><creator>ZHU XIAOFAN</creator><creator>XU GANGFAN</creator><creator>LI XINGUANG</creator><creator>XU JIYOU</creator><creator>YANG GUOQIANG</creator><creator>MA XIAOCHUN</creator><creator>WANG ZEKENG</creator><scope>EVB</scope></search><sort><creationdate>20160706</creationdate><title>Spoken language evaluation method based on deep learning and spoken language evaluation system</title><author>YE XUECHAO ; KANG YURAN ; LI SUMEI ; ZHU XIAOFAN ; XU GANGFAN ; LI XINGUANG ; XU JIYOU ; YANG GUOQIANG ; MA XIAOCHUN ; WANG ZEKENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN105741832A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>YE XUECHAO</creatorcontrib><creatorcontrib>KANG YURAN</creatorcontrib><creatorcontrib>LI SUMEI</creatorcontrib><creatorcontrib>ZHU XIAOFAN</creatorcontrib><creatorcontrib>XU GANGFAN</creatorcontrib><creatorcontrib>LI XINGUANG</creatorcontrib><creatorcontrib>XU JIYOU</creatorcontrib><creatorcontrib>YANG GUOQIANG</creatorcontrib><creatorcontrib>MA XIAOCHUN</creatorcontrib><creatorcontrib>WANG ZEKENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YE XUECHAO</au><au>KANG YURAN</au><au>LI SUMEI</au><au>ZHU XIAOFAN</au><au>XU GANGFAN</au><au>LI XINGUANG</au><au>XU JIYOU</au><au>YANG GUOQIANG</au><au>MA XIAOCHUN</au><au>WANG ZEKENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Spoken language evaluation method based on deep learning and spoken language evaluation system</title><date>2016-07-06</date><risdate>2016</risdate><abstract>The invention discloses a spoken language evaluation method based on deep learning and a spoken language evaluation system. The method provided by the invention is characterized in that voice segment intonation degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the intonation accuracy of the tested voice can be acquired; the voice emotion degree can be evaluated by adopting the deep learning algorithm, and the evaluation of the emotion accuracy of the tested voice can be acquired; and the overall evaluation of the pronunciation quality of the whole sentence can be carried out by adopting the deep learning algorithm. By establishing the deep belief network mode, the DBN(deep belief network) model can be used for the spoken English test, and the evaluation of the pronunciation of the spoken English can be more comprehensive and more accurate, and at the same time, the deep learning algorithm has the higher evaluation accuracy by comparing with the emotion evaluation of the sh</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN105741832A
source esp@cenet
subjects ACOUSTICS
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Spoken language evaluation method based on deep learning and spoken language evaluation system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YE%20XUECHAO&rft.date=2016-07-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN105741832A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true