MIM manufacturing process for non-magnetic 17-4P stainless steel parts
The invention discloses an MIM manufacturing process for non-magnetic 17-4P stainless steel parts. The MIM manufacturing process comprises the following steps: putting a 17-4PH stainless steel powder and a binder into a kneading machine for mixing; cooling to a room temperature and then crushing by...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DUAN MANTANG |
description | The invention discloses an MIM manufacturing process for non-magnetic 17-4P stainless steel parts. The MIM manufacturing process comprises the following steps: putting a 17-4PH stainless steel powder and a binder into a kneading machine for mixing; cooling to a room temperature and then crushing by using a crusher, and then extruding a crushed material for pelletizing in an injection molding machine; processing a prepared feeding material in the injection molding machine into blanks; then catalyzing, debinding and removing polyformaldehyde from the injection blanks in a catalytic debinding furnace; putting well catalyzed and debound blanks into a vacuum furnace for debinding and sintering; and carrying out solution treatment on well sintered parts in a shielding gas protected continuous furnace or the vacuum furnace. The MIM manufacturing process provided by the invention adopts an MIM process and uses a 17-4PH powder sintered through nitrogen, and then the non-magnetic MIM metal parts with good compactness a |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN105537595A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN105537595A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN105537595A3</originalsourceid><addsrcrecordid>eNrjZHDz9fRVyE3MK01LTC4pLcrMS1coKMpPTi0uVkjLL1LIy8_TzU1Mz0styUxWMDTXNQlQKC5JzMzLASkoLklNzVEoSCwqKeZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqUAz4p39DA1MTY3NTS1NHY2JUQMAywIy0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MIM manufacturing process for non-magnetic 17-4P stainless steel parts</title><source>esp@cenet</source><creator>DUAN MANTANG</creator><creatorcontrib>DUAN MANTANG</creatorcontrib><description>The invention discloses an MIM manufacturing process for non-magnetic 17-4P stainless steel parts. The MIM manufacturing process comprises the following steps: putting a 17-4PH stainless steel powder and a binder into a kneading machine for mixing; cooling to a room temperature and then crushing by using a crusher, and then extruding a crushed material for pelletizing in an injection molding machine; processing a prepared feeding material in the injection molding machine into blanks; then catalyzing, debinding and removing polyformaldehyde from the injection blanks in a catalytic debinding furnace; putting well catalyzed and debound blanks into a vacuum furnace for debinding and sintering; and carrying out solution treatment on well sintered parts in a shielding gas protected continuous furnace or the vacuum furnace. The MIM manufacturing process provided by the invention adopts an MIM process and uses a 17-4PH powder sintered through nitrogen, and then the non-magnetic MIM metal parts with good compactness a</description><language>chi ; eng</language><subject>CASTING ; MAKING METALLIC POWDER ; MANUFACTURE OF ARTICLES FROM METALLIC POWDER ; PERFORMING OPERATIONS ; POWDER METALLURGY ; TRANSPORTING ; WORKING METALLIC POWDER</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160504&DB=EPODOC&CC=CN&NR=105537595A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160504&DB=EPODOC&CC=CN&NR=105537595A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DUAN MANTANG</creatorcontrib><title>MIM manufacturing process for non-magnetic 17-4P stainless steel parts</title><description>The invention discloses an MIM manufacturing process for non-magnetic 17-4P stainless steel parts. The MIM manufacturing process comprises the following steps: putting a 17-4PH stainless steel powder and a binder into a kneading machine for mixing; cooling to a room temperature and then crushing by using a crusher, and then extruding a crushed material for pelletizing in an injection molding machine; processing a prepared feeding material in the injection molding machine into blanks; then catalyzing, debinding and removing polyformaldehyde from the injection blanks in a catalytic debinding furnace; putting well catalyzed and debound blanks into a vacuum furnace for debinding and sintering; and carrying out solution treatment on well sintered parts in a shielding gas protected continuous furnace or the vacuum furnace. The MIM manufacturing process provided by the invention adopts an MIM process and uses a 17-4PH powder sintered through nitrogen, and then the non-magnetic MIM metal parts with good compactness a</description><subject>CASTING</subject><subject>MAKING METALLIC POWDER</subject><subject>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</subject><subject>PERFORMING OPERATIONS</subject><subject>POWDER METALLURGY</subject><subject>TRANSPORTING</subject><subject>WORKING METALLIC POWDER</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDz9fRVyE3MK01LTC4pLcrMS1coKMpPTi0uVkjLL1LIy8_TzU1Mz0styUxWMDTXNQlQKC5JzMzLASkoLklNzVEoSCwqKeZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqUAz4p39DA1MTY3NTS1NHY2JUQMAywIy0A</recordid><startdate>20160504</startdate><enddate>20160504</enddate><creator>DUAN MANTANG</creator><scope>EVB</scope></search><sort><creationdate>20160504</creationdate><title>MIM manufacturing process for non-magnetic 17-4P stainless steel parts</title><author>DUAN MANTANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN105537595A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>CASTING</topic><topic>MAKING METALLIC POWDER</topic><topic>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</topic><topic>PERFORMING OPERATIONS</topic><topic>POWDER METALLURGY</topic><topic>TRANSPORTING</topic><topic>WORKING METALLIC POWDER</topic><toplevel>online_resources</toplevel><creatorcontrib>DUAN MANTANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DUAN MANTANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MIM manufacturing process for non-magnetic 17-4P stainless steel parts</title><date>2016-05-04</date><risdate>2016</risdate><abstract>The invention discloses an MIM manufacturing process for non-magnetic 17-4P stainless steel parts. The MIM manufacturing process comprises the following steps: putting a 17-4PH stainless steel powder and a binder into a kneading machine for mixing; cooling to a room temperature and then crushing by using a crusher, and then extruding a crushed material for pelletizing in an injection molding machine; processing a prepared feeding material in the injection molding machine into blanks; then catalyzing, debinding and removing polyformaldehyde from the injection blanks in a catalytic debinding furnace; putting well catalyzed and debound blanks into a vacuum furnace for debinding and sintering; and carrying out solution treatment on well sintered parts in a shielding gas protected continuous furnace or the vacuum furnace. The MIM manufacturing process provided by the invention adopts an MIM process and uses a 17-4PH powder sintered through nitrogen, and then the non-magnetic MIM metal parts with good compactness a</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN105537595A |
source | esp@cenet |
subjects | CASTING MAKING METALLIC POWDER MANUFACTURE OF ARTICLES FROM METALLIC POWDER PERFORMING OPERATIONS POWDER METALLURGY TRANSPORTING WORKING METALLIC POWDER |
title | MIM manufacturing process for non-magnetic 17-4P stainless steel parts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DUAN%20MANTANG&rft.date=2016-05-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN105537595A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |