Polycrystalline silicon thick films for photovoltaic devices or the like, and methods of making same
A method of manufacturing a polycrystalline silicon film includes: depositing a catalyst layer including nickel and depositing nickel nanoparticles on a substrate; exposing the catalyst layer and the nanoparticles to at least silane gas; and heat treating the substrate coated with the catalyst layer...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | VEERASAMY VIJAYEN S BRACAMONTE MARTIN D |
description | A method of manufacturing a polycrystalline silicon film includes: depositing a catalyst layer including nickel and depositing nickel nanoparticles on a substrate; exposing the catalyst layer and the nanoparticles to at least silane gas; and heat treating the substrate coated with the catalyst layer and the nanoparticles during at least part of the exposing to silane gas in growing a silicon based film on the substrate. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN104919094A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN104919094A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN104919094A3</originalsourceid><addsrcrecordid>eNqNirEKwjAQQLs4iPoP567QYpeOUhQncXAvIbmYI5dc6YVC_94OfoDTg_fetnIv4cVOixbDTBlBiclKhhLIRvDEScHLBGOQIrNwMWTB4UwWFVZfAgJTxBOY7CBhCeLW4CGZSPkDahLuq403rHj4cVcd77d3_zjjKAPqaCxmLEP_bOq2a7q6a6-Xf54vC3w-1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Polycrystalline silicon thick films for photovoltaic devices or the like, and methods of making same</title><source>esp@cenet</source><creator>VEERASAMY VIJAYEN S ; BRACAMONTE MARTIN D</creator><creatorcontrib>VEERASAMY VIJAYEN S ; BRACAMONTE MARTIN D</creatorcontrib><description>A method of manufacturing a polycrystalline silicon film includes: depositing a catalyst layer including nickel and depositing nickel nanoparticles on a substrate; exposing the catalyst layer and the nanoparticles to at least silane gas; and heat treating the substrate coated with the catalyst layer and the nanoparticles during at least part of the exposing to silane gas in growing a silicon based film on the substrate.</description><language>eng</language><subject>AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE ; APPARATUS THEREFOR ; BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; CRYSTAL GROWTH ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE ; REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION ; REFINING BY ZONE-MELTING OF MATERIAL ; SEMICONDUCTOR DEVICES ; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE ; SINGLE-CRYSTAL-GROWTH ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE ; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150916&DB=EPODOC&CC=CN&NR=104919094A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150916&DB=EPODOC&CC=CN&NR=104919094A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>VEERASAMY VIJAYEN S</creatorcontrib><creatorcontrib>BRACAMONTE MARTIN D</creatorcontrib><title>Polycrystalline silicon thick films for photovoltaic devices or the like, and methods of making same</title><description>A method of manufacturing a polycrystalline silicon film includes: depositing a catalyst layer including nickel and depositing nickel nanoparticles on a substrate; exposing the catalyst layer and the nanoparticles to at least silane gas; and heat treating the substrate coated with the catalyst layer and the nanoparticles during at least part of the exposing to silane gas in growing a silicon based film on the substrate.</description><subject>AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE</subject><subject>APPARATUS THEREFOR</subject><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>CRYSTAL GROWTH</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</subject><subject>REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION</subject><subject>REFINING BY ZONE-MELTING OF MATERIAL</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</subject><subject>SINGLE-CRYSTAL-GROWTH</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><subject>UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAQQLs4iPoP567QYpeOUhQncXAvIbmYI5dc6YVC_94OfoDTg_fetnIv4cVOixbDTBlBiclKhhLIRvDEScHLBGOQIrNwMWTB4UwWFVZfAgJTxBOY7CBhCeLW4CGZSPkDahLuq403rHj4cVcd77d3_zjjKAPqaCxmLEP_bOq2a7q6a6-Xf54vC3w-1A</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>VEERASAMY VIJAYEN S</creator><creator>BRACAMONTE MARTIN D</creator><scope>EVB</scope></search><sort><creationdate>20150916</creationdate><title>Polycrystalline silicon thick films for photovoltaic devices or the like, and methods of making same</title><author>VEERASAMY VIJAYEN S ; BRACAMONTE MARTIN D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN104919094A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE</topic><topic>APPARATUS THEREFOR</topic><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>CRYSTAL GROWTH</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</topic><topic>REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION</topic><topic>REFINING BY ZONE-MELTING OF MATERIAL</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</topic><topic>SINGLE-CRYSTAL-GROWTH</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</topic><topic>UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL</topic><toplevel>online_resources</toplevel><creatorcontrib>VEERASAMY VIJAYEN S</creatorcontrib><creatorcontrib>BRACAMONTE MARTIN D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>VEERASAMY VIJAYEN S</au><au>BRACAMONTE MARTIN D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Polycrystalline silicon thick films for photovoltaic devices or the like, and methods of making same</title><date>2015-09-16</date><risdate>2015</risdate><abstract>A method of manufacturing a polycrystalline silicon film includes: depositing a catalyst layer including nickel and depositing nickel nanoparticles on a substrate; exposing the catalyst layer and the nanoparticles to at least silane gas; and heat treating the substrate coated with the catalyst layer and the nanoparticles during at least part of the exposing to silane gas in growing a silicon based film on the substrate.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_CN104919094A |
source | esp@cenet |
subjects | AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE APPARATUS THEREFOR BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL CRYSTAL GROWTH DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ELECTRICITY GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION REFINING BY ZONE-MELTING OF MATERIAL SEMICONDUCTOR DEVICES SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE SINGLE-CRYSTAL-GROWTH SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL |
title | Polycrystalline silicon thick films for photovoltaic devices or the like, and methods of making same |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=VEERASAMY%20VIJAYEN%20S&rft.date=2015-09-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN104919094A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |