Indoor scene image classification method facing service robot

The invention discloses an indoor scene image classification method facing a service robot and belongs to the technical field of scene classification. The indoor scene image classification method disclosed by the invention comprises the following steps: step 1: selecting a training sample from a pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHAI YI, YIN HONGPENG, JIAO XUGUO, LI YI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHAI YI
YIN HONGPENG
JIAO XUGUO
LI YI
description The invention discloses an indoor scene image classification method facing a service robot and belongs to the technical field of scene classification. The indoor scene image classification method disclosed by the invention comprises the following steps: step 1: selecting a training sample from a prior scene image library; step 2: pre-processing the training sample; step 3P training a sparse automatic encoding (SAE) model based on maximum divisibility (MSD); step 4: extracting characteristics of the training sample to obtain characteristic vectors; step 5: carrying out dimensionality reduction by using mean value pooling; step 6: combining a genetic algorithm-particle swarm optimization (GA-PSO) to train a support vector machine (SVM) to obtain parameters; and step 7: classifying newly-acquired scene images by using trained SAE model and SVM. With the adoption of the indoor scene image classification method, scenes in a complicated indoor environment can be classified so that the service robot can provide more and more accurate services according to the acquired scene images.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN104809469A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN104809469A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN104809469A3</originalsourceid><addsrcrecordid>eNrjZLD1zEvJzy9SKE5OzUtVyMxNTE9VSM5JLC7OTMtMTizJzM9TyE0tychPUUhLTM7MS1coTi0qy0xOVSjKT8ov4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFiSBTS-Kd_QwNTCwMLE3MLB2NiVEDAC0fMF4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Indoor scene image classification method facing service robot</title><source>esp@cenet</source><creator>CHAI YI ; YIN HONGPENG ; JIAO XUGUO ; LI YI</creator><creatorcontrib>CHAI YI ; YIN HONGPENG ; JIAO XUGUO ; LI YI</creatorcontrib><description>The invention discloses an indoor scene image classification method facing a service robot and belongs to the technical field of scene classification. The indoor scene image classification method disclosed by the invention comprises the following steps: step 1: selecting a training sample from a prior scene image library; step 2: pre-processing the training sample; step 3P training a sparse automatic encoding (SAE) model based on maximum divisibility (MSD); step 4: extracting characteristics of the training sample to obtain characteristic vectors; step 5: carrying out dimensionality reduction by using mean value pooling; step 6: combining a genetic algorithm-particle swarm optimization (GA-PSO) to train a support vector machine (SVM) to obtain parameters; and step 7: classifying newly-acquired scene images by using trained SAE model and SVM. With the adoption of the indoor scene image classification method, scenes in a complicated indoor environment can be classified so that the service robot can provide more and more accurate services according to the acquired scene images.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150729&amp;DB=EPODOC&amp;CC=CN&amp;NR=104809469A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150729&amp;DB=EPODOC&amp;CC=CN&amp;NR=104809469A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHAI YI</creatorcontrib><creatorcontrib>YIN HONGPENG</creatorcontrib><creatorcontrib>JIAO XUGUO</creatorcontrib><creatorcontrib>LI YI</creatorcontrib><title>Indoor scene image classification method facing service robot</title><description>The invention discloses an indoor scene image classification method facing a service robot and belongs to the technical field of scene classification. The indoor scene image classification method disclosed by the invention comprises the following steps: step 1: selecting a training sample from a prior scene image library; step 2: pre-processing the training sample; step 3P training a sparse automatic encoding (SAE) model based on maximum divisibility (MSD); step 4: extracting characteristics of the training sample to obtain characteristic vectors; step 5: carrying out dimensionality reduction by using mean value pooling; step 6: combining a genetic algorithm-particle swarm optimization (GA-PSO) to train a support vector machine (SVM) to obtain parameters; and step 7: classifying newly-acquired scene images by using trained SAE model and SVM. With the adoption of the indoor scene image classification method, scenes in a complicated indoor environment can be classified so that the service robot can provide more and more accurate services according to the acquired scene images.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD1zEvJzy9SKE5OzUtVyMxNTE9VSM5JLC7OTMtMTizJzM9TyE0tychPUUhLTM7MS1coTi0qy0xOVSjKT8ov4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFiSBTS-Kd_QwNTCwMLE3MLB2NiVEDAC0fMF4</recordid><startdate>20150729</startdate><enddate>20150729</enddate><creator>CHAI YI</creator><creator>YIN HONGPENG</creator><creator>JIAO XUGUO</creator><creator>LI YI</creator><scope>EVB</scope></search><sort><creationdate>20150729</creationdate><title>Indoor scene image classification method facing service robot</title><author>CHAI YI ; YIN HONGPENG ; JIAO XUGUO ; LI YI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN104809469A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHAI YI</creatorcontrib><creatorcontrib>YIN HONGPENG</creatorcontrib><creatorcontrib>JIAO XUGUO</creatorcontrib><creatorcontrib>LI YI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHAI YI</au><au>YIN HONGPENG</au><au>JIAO XUGUO</au><au>LI YI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Indoor scene image classification method facing service robot</title><date>2015-07-29</date><risdate>2015</risdate><abstract>The invention discloses an indoor scene image classification method facing a service robot and belongs to the technical field of scene classification. The indoor scene image classification method disclosed by the invention comprises the following steps: step 1: selecting a training sample from a prior scene image library; step 2: pre-processing the training sample; step 3P training a sparse automatic encoding (SAE) model based on maximum divisibility (MSD); step 4: extracting characteristics of the training sample to obtain characteristic vectors; step 5: carrying out dimensionality reduction by using mean value pooling; step 6: combining a genetic algorithm-particle swarm optimization (GA-PSO) to train a support vector machine (SVM) to obtain parameters; and step 7: classifying newly-acquired scene images by using trained SAE model and SVM. With the adoption of the indoor scene image classification method, scenes in a complicated indoor environment can be classified so that the service robot can provide more and more accurate services according to the acquired scene images.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_CN104809469A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Indoor scene image classification method facing service robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHAI%20YI&rft.date=2015-07-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN104809469A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true