Tumor gene expression data feature selection method based on locally linear embedding algorithm
The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new dis...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PANG ZENAN LI XIAODAN SU LEI LI JIANGENG ZHANG WEI |
description | The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new distance expression mode is redefined, wherein I is the distance between identical label samples, and II is the distance between different label samples; reconstruction weights of samples in a class and reconstruction weights of samples outside the class are calculated respectively; rules are distinguished; feature evaluation is conducted on a function. The tumor gene expression data feature selection method has the advantages of the LLE Score algorithm that high-dimensional neighbourhood information can be retained in a low-dimensional structure, label information can be well used, and meanwhile the calculation cost is low. According to the tumor gene expression data feature selection method, gene data can be classif |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN104200134A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN104200134A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN104200134A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbNxIeodxgMIre0FpFRcueq-TJvfNDBJSpKC3t4KHsDV5z0e_L3qu9WFSAYehNcSkZINnjRnpgmc1whKEIz5qx3yHDQNnKBpYwkji7xJrAdHghugtfWGWEyINs_uqHYTS8Lptwd1vrdd87hgCT3SwuP2nPvmWRb1tSjKqr5V_zQfqKQ9JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Tumor gene expression data feature selection method based on locally linear embedding algorithm</title><source>esp@cenet</source><creator>PANG ZENAN ; LI XIAODAN ; SU LEI ; LI JIANGENG ; ZHANG WEI</creator><creatorcontrib>PANG ZENAN ; LI XIAODAN ; SU LEI ; LI JIANGENG ; ZHANG WEI</creatorcontrib><description>The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new distance expression mode is redefined, wherein I is the distance between identical label samples, and II is the distance between different label samples; reconstruction weights of samples in a class and reconstruction weights of samples outside the class are calculated respectively; rules are distinguished; feature evaluation is conducted on a function. The tumor gene expression data feature selection method has the advantages of the LLE Score algorithm that high-dimensional neighbourhood information can be retained in a low-dimensional structure, label information can be well used, and meanwhile the calculation cost is low. According to the tumor gene expression data feature selection method, gene data can be classif</description><language>chi ; eng</language><subject>BEER ; BIOCHEMISTRY ; CALCULATING ; CHEMISTRY ; COMPOSITIONS OR TEST PAPERS THEREFOR ; COMPUTING ; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; ENZYMOLOGY ; MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS ; METALLURGY ; MICROBIOLOGY ; MUTATION OR GENETIC ENGINEERING ; PHYSICS ; PROCESSES OF PREPARING SUCH COMPOSITIONS ; SPIRITS ; VINEGAR ; WINE</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20141210&DB=EPODOC&CC=CN&NR=104200134A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20141210&DB=EPODOC&CC=CN&NR=104200134A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PANG ZENAN</creatorcontrib><creatorcontrib>LI XIAODAN</creatorcontrib><creatorcontrib>SU LEI</creatorcontrib><creatorcontrib>LI JIANGENG</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><title>Tumor gene expression data feature selection method based on locally linear embedding algorithm</title><description>The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new distance expression mode is redefined, wherein I is the distance between identical label samples, and II is the distance between different label samples; reconstruction weights of samples in a class and reconstruction weights of samples outside the class are calculated respectively; rules are distinguished; feature evaluation is conducted on a function. The tumor gene expression data feature selection method has the advantages of the LLE Score algorithm that high-dimensional neighbourhood information can be retained in a low-dimensional structure, label information can be well used, and meanwhile the calculation cost is low. According to the tumor gene expression data feature selection method, gene data can be classif</description><subject>BEER</subject><subject>BIOCHEMISTRY</subject><subject>CALCULATING</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS OR TEST PAPERS THEREFOR</subject><subject>COMPUTING</subject><subject>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ENZYMOLOGY</subject><subject>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</subject><subject>METALLURGY</subject><subject>MICROBIOLOGY</subject><subject>MUTATION OR GENETIC ENGINEERING</subject><subject>PHYSICS</subject><subject>PROCESSES OF PREPARING SUCH COMPOSITIONS</subject><subject>SPIRITS</subject><subject>VINEGAR</subject><subject>WINE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbNxIeodxgMIre0FpFRcueq-TJvfNDBJSpKC3t4KHsDV5z0e_L3qu9WFSAYehNcSkZINnjRnpgmc1whKEIz5qx3yHDQNnKBpYwkji7xJrAdHghugtfWGWEyINs_uqHYTS8Lptwd1vrdd87hgCT3SwuP2nPvmWRb1tSjKqr5V_zQfqKQ9JA</recordid><startdate>20141210</startdate><enddate>20141210</enddate><creator>PANG ZENAN</creator><creator>LI XIAODAN</creator><creator>SU LEI</creator><creator>LI JIANGENG</creator><creator>ZHANG WEI</creator><scope>EVB</scope></search><sort><creationdate>20141210</creationdate><title>Tumor gene expression data feature selection method based on locally linear embedding algorithm</title><author>PANG ZENAN ; LI XIAODAN ; SU LEI ; LI JIANGENG ; ZHANG WEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN104200134A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2014</creationdate><topic>BEER</topic><topic>BIOCHEMISTRY</topic><topic>CALCULATING</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS OR TEST PAPERS THEREFOR</topic><topic>COMPUTING</topic><topic>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ENZYMOLOGY</topic><topic>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</topic><topic>METALLURGY</topic><topic>MICROBIOLOGY</topic><topic>MUTATION OR GENETIC ENGINEERING</topic><topic>PHYSICS</topic><topic>PROCESSES OF PREPARING SUCH COMPOSITIONS</topic><topic>SPIRITS</topic><topic>VINEGAR</topic><topic>WINE</topic><toplevel>online_resources</toplevel><creatorcontrib>PANG ZENAN</creatorcontrib><creatorcontrib>LI XIAODAN</creatorcontrib><creatorcontrib>SU LEI</creatorcontrib><creatorcontrib>LI JIANGENG</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PANG ZENAN</au><au>LI XIAODAN</au><au>SU LEI</au><au>LI JIANGENG</au><au>ZHANG WEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Tumor gene expression data feature selection method based on locally linear embedding algorithm</title><date>2014-12-10</date><risdate>2014</risdate><abstract>The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new distance expression mode is redefined, wherein I is the distance between identical label samples, and II is the distance between different label samples; reconstruction weights of samples in a class and reconstruction weights of samples outside the class are calculated respectively; rules are distinguished; feature evaluation is conducted on a function. The tumor gene expression data feature selection method has the advantages of the LLE Score algorithm that high-dimensional neighbourhood information can be retained in a low-dimensional structure, label information can be well used, and meanwhile the calculation cost is low. According to the tumor gene expression data feature selection method, gene data can be classif</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN104200134A |
source | esp@cenet |
subjects | BEER BIOCHEMISTRY CALCULATING CHEMISTRY COMPOSITIONS OR TEST PAPERS THEREFOR COMPUTING CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES COUNTING ELECTRIC DIGITAL DATA PROCESSING ENZYMOLOGY MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS METALLURGY MICROBIOLOGY MUTATION OR GENETIC ENGINEERING PHYSICS PROCESSES OF PREPARING SUCH COMPOSITIONS SPIRITS VINEGAR WINE |
title | Tumor gene expression data feature selection method based on locally linear embedding algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PANG%20ZENAN&rft.date=2014-12-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN104200134A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |