Tumor gene expression data feature selection method based on locally linear embedding algorithm

The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PANG ZENAN, LI XIAODAN, SU LEI, LI JIANGENG, ZHANG WEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PANG ZENAN
LI XIAODAN
SU LEI
LI JIANGENG
ZHANG WEI
description The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new distance expression mode is redefined, wherein I is the distance between identical label samples, and II is the distance between different label samples; reconstruction weights of samples in a class and reconstruction weights of samples outside the class are calculated respectively; rules are distinguished; feature evaluation is conducted on a function. The tumor gene expression data feature selection method has the advantages of the LLE Score algorithm that high-dimensional neighbourhood information can be retained in a low-dimensional structure, label information can be well used, and meanwhile the calculation cost is low. According to the tumor gene expression data feature selection method, gene data can be classif
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN104200134A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN104200134A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN104200134A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbNxIeodxgMIre0FpFRcueq-TJvfNDBJSpKC3t4KHsDV5z0e_L3qu9WFSAYehNcSkZINnjRnpgmc1whKEIz5qx3yHDQNnKBpYwkji7xJrAdHghugtfWGWEyINs_uqHYTS8Lptwd1vrdd87hgCT3SwuP2nPvmWRb1tSjKqr5V_zQfqKQ9JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Tumor gene expression data feature selection method based on locally linear embedding algorithm</title><source>esp@cenet</source><creator>PANG ZENAN ; LI XIAODAN ; SU LEI ; LI JIANGENG ; ZHANG WEI</creator><creatorcontrib>PANG ZENAN ; LI XIAODAN ; SU LEI ; LI JIANGENG ; ZHANG WEI</creatorcontrib><description>The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new distance expression mode is redefined, wherein I is the distance between identical label samples, and II is the distance between different label samples; reconstruction weights of samples in a class and reconstruction weights of samples outside the class are calculated respectively; rules are distinguished; feature evaluation is conducted on a function. The tumor gene expression data feature selection method has the advantages of the LLE Score algorithm that high-dimensional neighbourhood information can be retained in a low-dimensional structure, label information can be well used, and meanwhile the calculation cost is low. According to the tumor gene expression data feature selection method, gene data can be classif</description><language>chi ; eng</language><subject>BEER ; BIOCHEMISTRY ; CALCULATING ; CHEMISTRY ; COMPOSITIONS OR TEST PAPERS THEREFOR ; COMPUTING ; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; ENZYMOLOGY ; MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS ; METALLURGY ; MICROBIOLOGY ; MUTATION OR GENETIC ENGINEERING ; PHYSICS ; PROCESSES OF PREPARING SUCH COMPOSITIONS ; SPIRITS ; VINEGAR ; WINE</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20141210&amp;DB=EPODOC&amp;CC=CN&amp;NR=104200134A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20141210&amp;DB=EPODOC&amp;CC=CN&amp;NR=104200134A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PANG ZENAN</creatorcontrib><creatorcontrib>LI XIAODAN</creatorcontrib><creatorcontrib>SU LEI</creatorcontrib><creatorcontrib>LI JIANGENG</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><title>Tumor gene expression data feature selection method based on locally linear embedding algorithm</title><description>The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new distance expression mode is redefined, wherein I is the distance between identical label samples, and II is the distance between different label samples; reconstruction weights of samples in a class and reconstruction weights of samples outside the class are calculated respectively; rules are distinguished; feature evaluation is conducted on a function. The tumor gene expression data feature selection method has the advantages of the LLE Score algorithm that high-dimensional neighbourhood information can be retained in a low-dimensional structure, label information can be well used, and meanwhile the calculation cost is low. According to the tumor gene expression data feature selection method, gene data can be classif</description><subject>BEER</subject><subject>BIOCHEMISTRY</subject><subject>CALCULATING</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS OR TEST PAPERS THEREFOR</subject><subject>COMPUTING</subject><subject>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ENZYMOLOGY</subject><subject>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</subject><subject>METALLURGY</subject><subject>MICROBIOLOGY</subject><subject>MUTATION OR GENETIC ENGINEERING</subject><subject>PHYSICS</subject><subject>PROCESSES OF PREPARING SUCH COMPOSITIONS</subject><subject>SPIRITS</subject><subject>VINEGAR</subject><subject>WINE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbNxIeodxgMIre0FpFRcueq-TJvfNDBJSpKC3t4KHsDV5z0e_L3qu9WFSAYehNcSkZINnjRnpgmc1whKEIz5qx3yHDQNnKBpYwkji7xJrAdHghugtfWGWEyINs_uqHYTS8Lptwd1vrdd87hgCT3SwuP2nPvmWRb1tSjKqr5V_zQfqKQ9JA</recordid><startdate>20141210</startdate><enddate>20141210</enddate><creator>PANG ZENAN</creator><creator>LI XIAODAN</creator><creator>SU LEI</creator><creator>LI JIANGENG</creator><creator>ZHANG WEI</creator><scope>EVB</scope></search><sort><creationdate>20141210</creationdate><title>Tumor gene expression data feature selection method based on locally linear embedding algorithm</title><author>PANG ZENAN ; LI XIAODAN ; SU LEI ; LI JIANGENG ; ZHANG WEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN104200134A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2014</creationdate><topic>BEER</topic><topic>BIOCHEMISTRY</topic><topic>CALCULATING</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS OR TEST PAPERS THEREFOR</topic><topic>COMPUTING</topic><topic>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ENZYMOLOGY</topic><topic>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</topic><topic>METALLURGY</topic><topic>MICROBIOLOGY</topic><topic>MUTATION OR GENETIC ENGINEERING</topic><topic>PHYSICS</topic><topic>PROCESSES OF PREPARING SUCH COMPOSITIONS</topic><topic>SPIRITS</topic><topic>VINEGAR</topic><topic>WINE</topic><toplevel>online_resources</toplevel><creatorcontrib>PANG ZENAN</creatorcontrib><creatorcontrib>LI XIAODAN</creatorcontrib><creatorcontrib>SU LEI</creatorcontrib><creatorcontrib>LI JIANGENG</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PANG ZENAN</au><au>LI XIAODAN</au><au>SU LEI</au><au>LI JIANGENG</au><au>ZHANG WEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Tumor gene expression data feature selection method based on locally linear embedding algorithm</title><date>2014-12-10</date><risdate>2014</risdate><abstract>The invention provides a tumor gene expression data feature selection method based on the locally linear embedding algorithm. According to the method, a neighbourhood is calculated according to class information of tumor gene expression data, and for better utilizing the class information, a new distance expression mode is redefined, wherein I is the distance between identical label samples, and II is the distance between different label samples; reconstruction weights of samples in a class and reconstruction weights of samples outside the class are calculated respectively; rules are distinguished; feature evaluation is conducted on a function. The tumor gene expression data feature selection method has the advantages of the LLE Score algorithm that high-dimensional neighbourhood information can be retained in a low-dimensional structure, label information can be well used, and meanwhile the calculation cost is low. According to the tumor gene expression data feature selection method, gene data can be classif</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN104200134A
source esp@cenet
subjects BEER
BIOCHEMISTRY
CALCULATING
CHEMISTRY
COMPOSITIONS OR TEST PAPERS THEREFOR
COMPUTING
CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
ENZYMOLOGY
MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS
METALLURGY
MICROBIOLOGY
MUTATION OR GENETIC ENGINEERING
PHYSICS
PROCESSES OF PREPARING SUCH COMPOSITIONS
SPIRITS
VINEGAR
WINE
title Tumor gene expression data feature selection method based on locally linear embedding algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PANG%20ZENAN&rft.date=2014-12-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN104200134A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true