Ink layer thickness detection method based on machine vision

The invention discloses an ink layer thickness detection method based on machine vision. The method includes the following implementation steps that 1, ink single-color on-site color lumps are manufactured, and density values of the ink single-color on-site color lumps are measured; 2, images of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FAN CAIXIA, FENG YU'NA, JING CUINING, HU TAO, LIU HU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FAN CAIXIA
FENG YU'NA
JING CUINING
HU TAO
LIU HU
description The invention discloses an ink layer thickness detection method based on machine vision. The method includes the following implementation steps that 1, ink single-color on-site color lumps are manufactured, and density values of the ink single-color on-site color lumps are measured; 2, images of the ink single-color on-site color lumps and digital color information of the images are obtained; 3, a model of mathematic relation between the digital color information of the images of the ink single-color on-site color lumps and the density information is established; 4, the thicknesses of ink layers are obtained through the digital color information of the images of the ink single-color on-site color lumps, and then detection on the thicknesses of the ink layers with the yellow ink Y, the magenta ink M, the cyan ink C and the black ink K on the basis of the machine vision is achieved. According to the method, the thicknesses of the ink layers are obtained through the digital color information of the images of the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN104048613A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN104048613A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN104048613A3</originalsourceid><addsrcrecordid>eNrjZLDxzMtWyEmsTC1SKMnITM7OSy0uVkhJLUlNLsnMz1PITS3JyE9RSEosTk1RAPETkzMy81IVyjKLgdI8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_QwMTAxMLM0NjRmBg1ANwHL60</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ink layer thickness detection method based on machine vision</title><source>esp@cenet</source><creator>FAN CAIXIA ; FENG YU'NA ; JING CUINING ; HU TAO ; LIU HU</creator><creatorcontrib>FAN CAIXIA ; FENG YU'NA ; JING CUINING ; HU TAO ; LIU HU</creatorcontrib><description>The invention discloses an ink layer thickness detection method based on machine vision. The method includes the following implementation steps that 1, ink single-color on-site color lumps are manufactured, and density values of the ink single-color on-site color lumps are measured; 2, images of the ink single-color on-site color lumps and digital color information of the images are obtained; 3, a model of mathematic relation between the digital color information of the images of the ink single-color on-site color lumps and the density information is established; 4, the thicknesses of ink layers are obtained through the digital color information of the images of the ink single-color on-site color lumps, and then detection on the thicknesses of the ink layers with the yellow ink Y, the magenta ink M, the cyan ink C and the black ink K on the basis of the machine vision is achieved. According to the method, the thicknesses of the ink layers are obtained through the digital color information of the images of the</description><language>chi ; eng</language><subject>MEASURING ; MEASURING ANGLES ; MEASURING AREAS ; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS ; MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS ; PHYSICS ; TESTING</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140917&amp;DB=EPODOC&amp;CC=CN&amp;NR=104048613A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140917&amp;DB=EPODOC&amp;CC=CN&amp;NR=104048613A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FAN CAIXIA</creatorcontrib><creatorcontrib>FENG YU'NA</creatorcontrib><creatorcontrib>JING CUINING</creatorcontrib><creatorcontrib>HU TAO</creatorcontrib><creatorcontrib>LIU HU</creatorcontrib><title>Ink layer thickness detection method based on machine vision</title><description>The invention discloses an ink layer thickness detection method based on machine vision. The method includes the following implementation steps that 1, ink single-color on-site color lumps are manufactured, and density values of the ink single-color on-site color lumps are measured; 2, images of the ink single-color on-site color lumps and digital color information of the images are obtained; 3, a model of mathematic relation between the digital color information of the images of the ink single-color on-site color lumps and the density information is established; 4, the thicknesses of ink layers are obtained through the digital color information of the images of the ink single-color on-site color lumps, and then detection on the thicknesses of the ink layers with the yellow ink Y, the magenta ink M, the cyan ink C and the black ink K on the basis of the machine vision is achieved. According to the method, the thicknesses of the ink layers are obtained through the digital color information of the images of the</description><subject>MEASURING</subject><subject>MEASURING ANGLES</subject><subject>MEASURING AREAS</subject><subject>MEASURING IRREGULARITIES OF SURFACES OR CONTOURS</subject><subject>MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDxzMtWyEmsTC1SKMnITM7OSy0uVkhJLUlNLsnMz1PITS3JyE9RSEosTk1RAPETkzMy81IVyjKLgdI8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_QwMTAxMLM0NjRmBg1ANwHL60</recordid><startdate>20140917</startdate><enddate>20140917</enddate><creator>FAN CAIXIA</creator><creator>FENG YU'NA</creator><creator>JING CUINING</creator><creator>HU TAO</creator><creator>LIU HU</creator><scope>EVB</scope></search><sort><creationdate>20140917</creationdate><title>Ink layer thickness detection method based on machine vision</title><author>FAN CAIXIA ; FENG YU'NA ; JING CUINING ; HU TAO ; LIU HU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN104048613A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2014</creationdate><topic>MEASURING</topic><topic>MEASURING ANGLES</topic><topic>MEASURING AREAS</topic><topic>MEASURING IRREGULARITIES OF SURFACES OR CONTOURS</topic><topic>MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN CAIXIA</creatorcontrib><creatorcontrib>FENG YU'NA</creatorcontrib><creatorcontrib>JING CUINING</creatorcontrib><creatorcontrib>HU TAO</creatorcontrib><creatorcontrib>LIU HU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FAN CAIXIA</au><au>FENG YU'NA</au><au>JING CUINING</au><au>HU TAO</au><au>LIU HU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ink layer thickness detection method based on machine vision</title><date>2014-09-17</date><risdate>2014</risdate><abstract>The invention discloses an ink layer thickness detection method based on machine vision. The method includes the following implementation steps that 1, ink single-color on-site color lumps are manufactured, and density values of the ink single-color on-site color lumps are measured; 2, images of the ink single-color on-site color lumps and digital color information of the images are obtained; 3, a model of mathematic relation between the digital color information of the images of the ink single-color on-site color lumps and the density information is established; 4, the thicknesses of ink layers are obtained through the digital color information of the images of the ink single-color on-site color lumps, and then detection on the thicknesses of the ink layers with the yellow ink Y, the magenta ink M, the cyan ink C and the black ink K on the basis of the machine vision is achieved. According to the method, the thicknesses of the ink layers are obtained through the digital color information of the images of the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN104048613A
source esp@cenet
subjects MEASURING
MEASURING ANGLES
MEASURING AREAS
MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS
PHYSICS
TESTING
title Ink layer thickness detection method based on machine vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FAN%20CAIXIA&rft.date=2014-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN104048613A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true