Association rule and bi-clustering-based airline customer data mining method

The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU HUIXIN, LI MEIHANG, LI TIECHEN, CAI QIANHUA, XUE YUN, HU XIAOHUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU HUIXIN
LI MEIHANG
LI TIECHEN
CAI QIANHUA
XUE YUN
HU XIAOHUI
description The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or customer-service matrix D, wherein each row represents a customer, each column represents a product, and each element represents the score of a customer about a product or service; (2) mining the score data of the customers on the basis of a consistent evolution type bi-clustering model by combining a parallel calculation technology to obtain customer groups with the same or similar preferences and altitudes to different products or service projects, thereby realizing the segmentation of the customers. According to the method, all the customer groups with similar preferences or habits can be found, the customers can be accurately segmented, the robustness and the accuracy of a customer segmentation method are improv
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN103455578A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN103455578A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN103455578A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w_kAAaUGXUtRHMTJvVyTsx4kl5JL398OPoDTDz_f2jxa1ewZK2eBMkcClAADWx9nrVRYRjugUgDkElkI_PJzogIBK0JiWQgkqp8ctmb1xqi0-3Vj9rfrq7tbmnJPOqEnodp3z-OhOTnnzpe2-cd8Aa80Nf4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Association rule and bi-clustering-based airline customer data mining method</title><source>esp@cenet</source><creator>XU HUIXIN ; LI MEIHANG ; LI TIECHEN ; CAI QIANHUA ; XUE YUN ; HU XIAOHUI</creator><creatorcontrib>XU HUIXIN ; LI MEIHANG ; LI TIECHEN ; CAI QIANHUA ; XUE YUN ; HU XIAOHUI</creatorcontrib><description>The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or customer-service matrix D, wherein each row represents a customer, each column represents a product, and each element represents the score of a customer about a product or service; (2) mining the score data of the customers on the basis of a consistent evolution type bi-clustering model by combining a parallel calculation technology to obtain customer groups with the same or similar preferences and altitudes to different products or service projects, thereby realizing the segmentation of the customers. According to the method, all the customer groups with similar preferences or habits can be found, the customers can be accurately segmented, the robustness and the accuracy of a customer segmentation method are improv</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2013</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20131218&amp;DB=EPODOC&amp;CC=CN&amp;NR=103455578A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20131218&amp;DB=EPODOC&amp;CC=CN&amp;NR=103455578A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU HUIXIN</creatorcontrib><creatorcontrib>LI MEIHANG</creatorcontrib><creatorcontrib>LI TIECHEN</creatorcontrib><creatorcontrib>CAI QIANHUA</creatorcontrib><creatorcontrib>XUE YUN</creatorcontrib><creatorcontrib>HU XIAOHUI</creatorcontrib><title>Association rule and bi-clustering-based airline customer data mining method</title><description>The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or customer-service matrix D, wherein each row represents a customer, each column represents a product, and each element represents the score of a customer about a product or service; (2) mining the score data of the customers on the basis of a consistent evolution type bi-clustering model by combining a parallel calculation technology to obtain customer groups with the same or similar preferences and altitudes to different products or service projects, thereby realizing the segmentation of the customers. According to the method, all the customer groups with similar preferences or habits can be found, the customers can be accurately segmented, the robustness and the accuracy of a customer segmentation method are improv</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2013</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w_kAAaUGXUtRHMTJvVyTsx4kl5JL398OPoDTDz_f2jxa1ewZK2eBMkcClAADWx9nrVRYRjugUgDkElkI_PJzogIBK0JiWQgkqp8ctmb1xqi0-3Vj9rfrq7tbmnJPOqEnodp3z-OhOTnnzpe2-cd8Aa80Nf4</recordid><startdate>20131218</startdate><enddate>20131218</enddate><creator>XU HUIXIN</creator><creator>LI MEIHANG</creator><creator>LI TIECHEN</creator><creator>CAI QIANHUA</creator><creator>XUE YUN</creator><creator>HU XIAOHUI</creator><scope>EVB</scope></search><sort><creationdate>20131218</creationdate><title>Association rule and bi-clustering-based airline customer data mining method</title><author>XU HUIXIN ; LI MEIHANG ; LI TIECHEN ; CAI QIANHUA ; XUE YUN ; HU XIAOHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN103455578A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2013</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU HUIXIN</creatorcontrib><creatorcontrib>LI MEIHANG</creatorcontrib><creatorcontrib>LI TIECHEN</creatorcontrib><creatorcontrib>CAI QIANHUA</creatorcontrib><creatorcontrib>XUE YUN</creatorcontrib><creatorcontrib>HU XIAOHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU HUIXIN</au><au>LI MEIHANG</au><au>LI TIECHEN</au><au>CAI QIANHUA</au><au>XUE YUN</au><au>HU XIAOHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Association rule and bi-clustering-based airline customer data mining method</title><date>2013-12-18</date><risdate>2013</risdate><abstract>The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or customer-service matrix D, wherein each row represents a customer, each column represents a product, and each element represents the score of a customer about a product or service; (2) mining the score data of the customers on the basis of a consistent evolution type bi-clustering model by combining a parallel calculation technology to obtain customer groups with the same or similar preferences and altitudes to different products or service projects, thereby realizing the segmentation of the customers. According to the method, all the customer groups with similar preferences or habits can be found, the customers can be accurately segmented, the robustness and the accuracy of a customer segmentation method are improv</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN103455578A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Association rule and bi-clustering-based airline customer data mining method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20HUIXIN&rft.date=2013-12-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN103455578A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true