Association rule and bi-clustering-based airline customer data mining method
The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or c...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XU HUIXIN LI MEIHANG LI TIECHEN CAI QIANHUA XUE YUN HU XIAOHUI |
description | The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or customer-service matrix D, wherein each row represents a customer, each column represents a product, and each element represents the score of a customer about a product or service; (2) mining the score data of the customers on the basis of a consistent evolution type bi-clustering model by combining a parallel calculation technology to obtain customer groups with the same or similar preferences and altitudes to different products or service projects, thereby realizing the segmentation of the customers. According to the method, all the customer groups with similar preferences or habits can be found, the customers can be accurately segmented, the robustness and the accuracy of a customer segmentation method are improv |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN103455578A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN103455578A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN103455578A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w_kAAaUGXUtRHMTJvVyTsx4kl5JL398OPoDTDz_f2jxa1ewZK2eBMkcClAADWx9nrVRYRjugUgDkElkI_PJzogIBK0JiWQgkqp8ctmb1xqi0-3Vj9rfrq7tbmnJPOqEnodp3z-OhOTnnzpe2-cd8Aa80Nf4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Association rule and bi-clustering-based airline customer data mining method</title><source>esp@cenet</source><creator>XU HUIXIN ; LI MEIHANG ; LI TIECHEN ; CAI QIANHUA ; XUE YUN ; HU XIAOHUI</creator><creatorcontrib>XU HUIXIN ; LI MEIHANG ; LI TIECHEN ; CAI QIANHUA ; XUE YUN ; HU XIAOHUI</creatorcontrib><description>The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or customer-service matrix D, wherein each row represents a customer, each column represents a product, and each element represents the score of a customer about a product or service; (2) mining the score data of the customers on the basis of a consistent evolution type bi-clustering model by combining a parallel calculation technology to obtain customer groups with the same or similar preferences and altitudes to different products or service projects, thereby realizing the segmentation of the customers. According to the method, all the customer groups with similar preferences or habits can be found, the customers can be accurately segmented, the robustness and the accuracy of a customer segmentation method are improv</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2013</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20131218&DB=EPODOC&CC=CN&NR=103455578A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20131218&DB=EPODOC&CC=CN&NR=103455578A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU HUIXIN</creatorcontrib><creatorcontrib>LI MEIHANG</creatorcontrib><creatorcontrib>LI TIECHEN</creatorcontrib><creatorcontrib>CAI QIANHUA</creatorcontrib><creatorcontrib>XUE YUN</creatorcontrib><creatorcontrib>HU XIAOHUI</creatorcontrib><title>Association rule and bi-clustering-based airline customer data mining method</title><description>The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or customer-service matrix D, wherein each row represents a customer, each column represents a product, and each element represents the score of a customer about a product or service; (2) mining the score data of the customers on the basis of a consistent evolution type bi-clustering model by combining a parallel calculation technology to obtain customer groups with the same or similar preferences and altitudes to different products or service projects, thereby realizing the segmentation of the customers. According to the method, all the customer groups with similar preferences or habits can be found, the customers can be accurately segmented, the robustness and the accuracy of a customer segmentation method are improv</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2013</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w_kAAaUGXUtRHMTJvVyTsx4kl5JL398OPoDTDz_f2jxa1ewZK2eBMkcClAADWx9nrVRYRjugUgDkElkI_PJzogIBK0JiWQgkqp8ctmb1xqi0-3Vj9rfrq7tbmnJPOqEnodp3z-OhOTnnzpe2-cd8Aa80Nf4</recordid><startdate>20131218</startdate><enddate>20131218</enddate><creator>XU HUIXIN</creator><creator>LI MEIHANG</creator><creator>LI TIECHEN</creator><creator>CAI QIANHUA</creator><creator>XUE YUN</creator><creator>HU XIAOHUI</creator><scope>EVB</scope></search><sort><creationdate>20131218</creationdate><title>Association rule and bi-clustering-based airline customer data mining method</title><author>XU HUIXIN ; LI MEIHANG ; LI TIECHEN ; CAI QIANHUA ; XUE YUN ; HU XIAOHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN103455578A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2013</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU HUIXIN</creatorcontrib><creatorcontrib>LI MEIHANG</creatorcontrib><creatorcontrib>LI TIECHEN</creatorcontrib><creatorcontrib>CAI QIANHUA</creatorcontrib><creatorcontrib>XUE YUN</creatorcontrib><creatorcontrib>HU XIAOHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU HUIXIN</au><au>LI MEIHANG</au><au>LI TIECHEN</au><au>CAI QIANHUA</au><au>XUE YUN</au><au>HU XIAOHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Association rule and bi-clustering-based airline customer data mining method</title><date>2013-12-18</date><risdate>2013</risdate><abstract>The invention discloses an association rule and bi-clustering-based airline customer data mining method, which comprises the following steps of (1) acquiring data, namely collecting the score data of airline customers about products or service on an airplane, and constructing a customer-product or customer-service matrix D, wherein each row represents a customer, each column represents a product, and each element represents the score of a customer about a product or service; (2) mining the score data of the customers on the basis of a consistent evolution type bi-clustering model by combining a parallel calculation technology to obtain customer groups with the same or similar preferences and altitudes to different products or service projects, thereby realizing the segmentation of the customers. According to the method, all the customer groups with similar preferences or habits can be found, the customers can be accurately segmented, the robustness and the accuracy of a customer segmentation method are improv</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN103455578A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Association rule and bi-clustering-based airline customer data mining method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20HUIXIN&rft.date=2013-12-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN103455578A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |