Method for detecting specific contained semantics of video based on grouped multi-instance learning model

The invention relates to a method for detecting specific contained semantics of a video based on a grouped multi-instance learning model in the technical field of computer video treatment, which comprises the following steps: continuously cutting the video according to the shots, thereby acquiring a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FAN JINGWEN, WU BIN, CHU XIQING, SUN YANFENG, ZHANG SHANFENG, SHEN CHUXIONG, JIANG XINGHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FAN JINGWEN
WU BIN
CHU XIQING
SUN YANFENG
ZHANG SHANFENG
SHEN CHUXIONG
JIANG XINGHAO
description The invention relates to a method for detecting specific contained semantics of a video based on a grouped multi-instance learning model in the technical field of computer video treatment, which comprises the following steps: continuously cutting the video according to the shots, thereby acquiring a plurality of video segments; using a FFMPEG tool to intercept image describers for each video segment Sij, wherein averagely 25 pictures are intercepted from each video segment at the same interval; extracting the related audio describers by using a video audio track, intercepting the video describers by using a video screenshot set, and intercepting the motion degree by using the video; performing machine learning on each set of describers; and acquiring a result after performing the machine learning, performing an European distance calculation on the learning result and one describer of one target video, and using the acquired minimum value as the approaching degree of the original video under the description of
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN102156686A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN102156686A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN102156686A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRdNYiHqH8QABoxhsJSg2WtmHdfdvHNjMhOzE86vgAaz-g_f484KvsKcGijpSgMEbS0d5gOfInryKORYEyuidGPtMGunFAUoPlz9ChbpRp-GD_ZSMS5ZsTjwowY3yves1IC2LWXQpY_XbRbE-n-7NpcSgLfLgPATWNrdqs632dX2oj7t_mjdddEDj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for detecting specific contained semantics of video based on grouped multi-instance learning model</title><source>esp@cenet</source><creator>FAN JINGWEN ; WU BIN ; CHU XIQING ; SUN YANFENG ; ZHANG SHANFENG ; SHEN CHUXIONG ; JIANG XINGHAO</creator><creatorcontrib>FAN JINGWEN ; WU BIN ; CHU XIQING ; SUN YANFENG ; ZHANG SHANFENG ; SHEN CHUXIONG ; JIANG XINGHAO</creatorcontrib><description>The invention relates to a method for detecting specific contained semantics of a video based on a grouped multi-instance learning model in the technical field of computer video treatment, which comprises the following steps: continuously cutting the video according to the shots, thereby acquiring a plurality of video segments; using a FFMPEG tool to intercept image describers for each video segment Sij, wherein averagely 25 pictures are intercepted from each video segment at the same interval; extracting the related audio describers by using a video audio track, intercepting the video describers by using a video screenshot set, and intercepting the motion degree by using the video; performing machine learning on each set of describers; and acquiring a result after performing the machine learning, performing an European distance calculation on the learning result and one describer of one target video, and using the acquired minimum value as the approaching degree of the original video under the description of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; HANDLING RECORD CARRIERS ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20110817&amp;DB=EPODOC&amp;CC=CN&amp;NR=102156686A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20110817&amp;DB=EPODOC&amp;CC=CN&amp;NR=102156686A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FAN JINGWEN</creatorcontrib><creatorcontrib>WU BIN</creatorcontrib><creatorcontrib>CHU XIQING</creatorcontrib><creatorcontrib>SUN YANFENG</creatorcontrib><creatorcontrib>ZHANG SHANFENG</creatorcontrib><creatorcontrib>SHEN CHUXIONG</creatorcontrib><creatorcontrib>JIANG XINGHAO</creatorcontrib><title>Method for detecting specific contained semantics of video based on grouped multi-instance learning model</title><description>The invention relates to a method for detecting specific contained semantics of a video based on a grouped multi-instance learning model in the technical field of computer video treatment, which comprises the following steps: continuously cutting the video according to the shots, thereby acquiring a plurality of video segments; using a FFMPEG tool to intercept image describers for each video segment Sij, wherein averagely 25 pictures are intercepted from each video segment at the same interval; extracting the related audio describers by using a video audio track, intercepting the video describers by using a video screenshot set, and intercepting the motion degree by using the video; performing machine learning on each set of describers; and acquiring a result after performing the machine learning, performing an European distance calculation on the learning result and one describer of one target video, and using the acquired minimum value as the approaching degree of the original video under the description of</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2011</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQRdNYiHqH8QABoxhsJSg2WtmHdfdvHNjMhOzE86vgAaz-g_f484KvsKcGijpSgMEbS0d5gOfInryKORYEyuidGPtMGunFAUoPlz9ChbpRp-GD_ZSMS5ZsTjwowY3yves1IC2LWXQpY_XbRbE-n-7NpcSgLfLgPATWNrdqs632dX2oj7t_mjdddEDj</recordid><startdate>20110817</startdate><enddate>20110817</enddate><creator>FAN JINGWEN</creator><creator>WU BIN</creator><creator>CHU XIQING</creator><creator>SUN YANFENG</creator><creator>ZHANG SHANFENG</creator><creator>SHEN CHUXIONG</creator><creator>JIANG XINGHAO</creator><scope>EVB</scope></search><sort><creationdate>20110817</creationdate><title>Method for detecting specific contained semantics of video based on grouped multi-instance learning model</title><author>FAN JINGWEN ; WU BIN ; CHU XIQING ; SUN YANFENG ; ZHANG SHANFENG ; SHEN CHUXIONG ; JIANG XINGHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN102156686A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN JINGWEN</creatorcontrib><creatorcontrib>WU BIN</creatorcontrib><creatorcontrib>CHU XIQING</creatorcontrib><creatorcontrib>SUN YANFENG</creatorcontrib><creatorcontrib>ZHANG SHANFENG</creatorcontrib><creatorcontrib>SHEN CHUXIONG</creatorcontrib><creatorcontrib>JIANG XINGHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FAN JINGWEN</au><au>WU BIN</au><au>CHU XIQING</au><au>SUN YANFENG</au><au>ZHANG SHANFENG</au><au>SHEN CHUXIONG</au><au>JIANG XINGHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for detecting specific contained semantics of video based on grouped multi-instance learning model</title><date>2011-08-17</date><risdate>2011</risdate><abstract>The invention relates to a method for detecting specific contained semantics of a video based on a grouped multi-instance learning model in the technical field of computer video treatment, which comprises the following steps: continuously cutting the video according to the shots, thereby acquiring a plurality of video segments; using a FFMPEG tool to intercept image describers for each video segment Sij, wherein averagely 25 pictures are intercepted from each video segment at the same interval; extracting the related audio describers by using a video audio track, intercepting the video describers by using a video screenshot set, and intercepting the motion degree by using the video; performing machine learning on each set of describers; and acquiring a result after performing the machine learning, performing an European distance calculation on the learning result and one describer of one target video, and using the acquired minimum value as the approaching degree of the original video under the description of</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN102156686A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
HANDLING RECORD CARRIERS
PHYSICS
PICTORIAL COMMUNICATION, e.g. TELEVISION
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Method for detecting specific contained semantics of video based on grouped multi-instance learning model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FAN%20JINGWEN&rft.date=2011-08-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN102156686A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true