Semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method
The invention discloses a semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method which comprises the following steps of: pretreating a document needing XML by a tree structure and regarding an information segment which can meet the following condition in an XML docum...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CUI HAIWEN ZHANG LIJUN CHEN QUN LOU YING LI ZHANHUAI LI XIA |
description | The invention discloses a semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method which comprises the following steps of: pretreating a document needing XML by a tree structure and regarding an information segment which can meet the following condition in an XML document as a virtual document; calculating relevance degree between each virtual document and a lexicalitem contained in the virtual document according to a relevance degree calculating model, establishing an inverted list containing the lexical item virtual document for each lexical item and arranging the inverted list in a descending order according to the relevance degree; and realizing top-k query on the basis of relevance degree between the virtual document d and keyword query Q. The invention can return a plurality of most relevant query results to a user in advance according to the requirement of the user under the condition of not calculating all query results, prevent redundancy operation and improve the effic |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN102063474BB</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN102063474BB</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN102063474BB3</originalsourceid><addsrcrecordid>eNqNyjEOgkAQBVAaC6PeYWKlBQkK0R6CsQAbTbQzI3xxA8yu7IJ6exsPYPWaN_bOR7QsThXUocHAUsC_sUVJlzyjRfp2EKsGUM41ekMZS9VzhSXV-Lx0V5LTxq9JybNXnZKKWriHLqfe6M6NxeznxJvv0lOy92H0FdZwAYG7JodVsA42YbSN4jj8K30BbDc5vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method</title><source>esp@cenet</source><creator>CUI HAIWEN ; ZHANG LIJUN ; CHEN QUN ; LOU YING ; LI ZHANHUAI ; LI XIA</creator><creatorcontrib>CUI HAIWEN ; ZHANG LIJUN ; CHEN QUN ; LOU YING ; LI ZHANHUAI ; LI XIA</creatorcontrib><description>The invention discloses a semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method which comprises the following steps of: pretreating a document needing XML by a tree structure and regarding an information segment which can meet the following condition in an XML document as a virtual document; calculating relevance degree between each virtual document and a lexicalitem contained in the virtual document according to a relevance degree calculating model, establishing an inverted list containing the lexical item virtual document for each lexical item and arranging the inverted list in a descending order according to the relevance degree; and realizing top-k query on the basis of relevance degree between the virtual document d and keyword query Q. The invention can return a plurality of most relevant query results to a user in advance according to the requirement of the user under the condition of not calculating all query results, prevent redundancy operation and improve the effic</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2012</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20121010&DB=EPODOC&CC=CN&NR=102063474B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20121010&DB=EPODOC&CC=CN&NR=102063474B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CUI HAIWEN</creatorcontrib><creatorcontrib>ZHANG LIJUN</creatorcontrib><creatorcontrib>CHEN QUN</creatorcontrib><creatorcontrib>LOU YING</creatorcontrib><creatorcontrib>LI ZHANHUAI</creatorcontrib><creatorcontrib>LI XIA</creatorcontrib><title>Semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method</title><description>The invention discloses a semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method which comprises the following steps of: pretreating a document needing XML by a tree structure and regarding an information segment which can meet the following condition in an XML document as a virtual document; calculating relevance degree between each virtual document and a lexicalitem contained in the virtual document according to a relevance degree calculating model, establishing an inverted list containing the lexical item virtual document for each lexical item and arranging the inverted list in a descending order according to the relevance degree; and realizing top-k query on the basis of relevance degree between the virtual document d and keyword query Q. The invention can return a plurality of most relevant query results to a user in advance according to the requirement of the user under the condition of not calculating all query results, prevent redundancy operation and improve the effic</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2012</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOgkAQBVAaC6PeYWKlBQkK0R6CsQAbTbQzI3xxA8yu7IJ6exsPYPWaN_bOR7QsThXUocHAUsC_sUVJlzyjRfp2EKsGUM41ekMZS9VzhSXV-Lx0V5LTxq9JybNXnZKKWriHLqfe6M6NxeznxJvv0lOy92H0FdZwAYG7JodVsA42YbSN4jj8K30BbDc5vA</recordid><startdate>20121010</startdate><enddate>20121010</enddate><creator>CUI HAIWEN</creator><creator>ZHANG LIJUN</creator><creator>CHEN QUN</creator><creator>LOU YING</creator><creator>LI ZHANHUAI</creator><creator>LI XIA</creator><scope>EVB</scope></search><sort><creationdate>20121010</creationdate><title>Semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method</title><author>CUI HAIWEN ; ZHANG LIJUN ; CHEN QUN ; LOU YING ; LI ZHANHUAI ; LI XIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN102063474BB3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2012</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CUI HAIWEN</creatorcontrib><creatorcontrib>ZHANG LIJUN</creatorcontrib><creatorcontrib>CHEN QUN</creatorcontrib><creatorcontrib>LOU YING</creatorcontrib><creatorcontrib>LI ZHANHUAI</creatorcontrib><creatorcontrib>LI XIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CUI HAIWEN</au><au>ZHANG LIJUN</au><au>CHEN QUN</au><au>LOU YING</au><au>LI ZHANHUAI</au><au>LI XIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method</title><date>2012-10-10</date><risdate>2012</risdate><abstract>The invention discloses a semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method which comprises the following steps of: pretreating a document needing XML by a tree structure and regarding an information segment which can meet the following condition in an XML document as a virtual document; calculating relevance degree between each virtual document and a lexicalitem contained in the virtual document according to a relevance degree calculating model, establishing an inverted list containing the lexical item virtual document for each lexical item and arranging the inverted list in a descending order according to the relevance degree; and realizing top-k query on the basis of relevance degree between the virtual document d and keyword query Q. The invention can return a plurality of most relevant query results to a user in advance according to the requirement of the user under the condition of not calculating all query results, prevent redundancy operation and improve the effic</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN102063474BB |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Semantic relevance-based XML (Extensive Makeup Language) keyword top-k inquiring method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CUI%20HAIWEN&rft.date=2012-10-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN102063474BB%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |