Model-based differential diagnosis of dementia and interactive setting of level of significance

When detecting and classifying hypo-metabolic regions in the brain to facilitate dementia diagnosis, a patient's brain scan image, generated using an FDG-PET scan, is compared to a plurality of hypo-metabolic region patterns in brain scan images associated with a plurality of types of dementia....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BUCHERT RALPH, THIELE FRANK O, YOUNG STEWART M, VIK TORBJOERN, WENZEL FABIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BUCHERT RALPH
THIELE FRANK O
YOUNG STEWART M
VIK TORBJOERN
WENZEL FABIAN
description When detecting and classifying hypo-metabolic regions in the brain to facilitate dementia diagnosis, a patient's brain scan image, generated using an FDG-PET scan, is compared to a plurality of hypo-metabolic region patterns in brain scan images associated with a plurality of types of dementia. In a fully automated mode, the patient's scan is compared to all scans stored in a knowledge base, and atype of dementia associated with a most likely match is output to a user along with a highlighted image of the patient' s brain. In a semi-automated mode, a user specifies two or more types of dementia, and the patient's scan is compared to scans typical of the specified types. Diagnosis information including respective likelihoods for each type is then output to the user. Additionally, the usercan adjust a threshold significance level to increase or decrease a number of voxels that are included in hypo-metabolic regions highlighted in the patient' s brain scan image.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN101681515A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN101681515A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN101681515A3</originalsourceid><addsrcrecordid>eNqNikEKwjAQRbNxIeod4gEKBqm4laK40ZX7MCY_ZSBOSif0_FrxAK7ef5-3NP5WInLzJEW0kVPCCKlM-SPUS1FWW5KNeH1vSxItS8VIofIEq6iVpZ-bjAl5Hsq9cOJAErA2i0RZsflxZbaX86O7NhiKhw4UIKi-u7udOxxd69rT_p_mDYVFPPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model-based differential diagnosis of dementia and interactive setting of level of significance</title><source>esp@cenet</source><creator>BUCHERT RALPH ; THIELE FRANK O ; YOUNG STEWART M ; VIK TORBJOERN ; WENZEL FABIAN</creator><creatorcontrib>BUCHERT RALPH ; THIELE FRANK O ; YOUNG STEWART M ; VIK TORBJOERN ; WENZEL FABIAN</creatorcontrib><description>When detecting and classifying hypo-metabolic regions in the brain to facilitate dementia diagnosis, a patient's brain scan image, generated using an FDG-PET scan, is compared to a plurality of hypo-metabolic region patterns in brain scan images associated with a plurality of types of dementia. In a fully automated mode, the patient's scan is compared to all scans stored in a knowledge base, and atype of dementia associated with a most likely match is output to a user along with a highlighted image of the patient' s brain. In a semi-automated mode, a user specifies two or more types of dementia, and the patient's scan is compared to scans typical of the specified types. Diagnosis information including respective likelihoods for each type is then output to the user. Additionally, the usercan adjust a threshold significance level to increase or decrease a number of voxels that are included in hypo-metabolic regions highlighted in the patient' s brain scan image.</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100324&amp;DB=EPODOC&amp;CC=CN&amp;NR=101681515A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100324&amp;DB=EPODOC&amp;CC=CN&amp;NR=101681515A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BUCHERT RALPH</creatorcontrib><creatorcontrib>THIELE FRANK O</creatorcontrib><creatorcontrib>YOUNG STEWART M</creatorcontrib><creatorcontrib>VIK TORBJOERN</creatorcontrib><creatorcontrib>WENZEL FABIAN</creatorcontrib><title>Model-based differential diagnosis of dementia and interactive setting of level of significance</title><description>When detecting and classifying hypo-metabolic regions in the brain to facilitate dementia diagnosis, a patient's brain scan image, generated using an FDG-PET scan, is compared to a plurality of hypo-metabolic region patterns in brain scan images associated with a plurality of types of dementia. In a fully automated mode, the patient's scan is compared to all scans stored in a knowledge base, and atype of dementia associated with a most likely match is output to a user along with a highlighted image of the patient' s brain. In a semi-automated mode, a user specifies two or more types of dementia, and the patient's scan is compared to scans typical of the specified types. Diagnosis information including respective likelihoods for each type is then output to the user. Additionally, the usercan adjust a threshold significance level to increase or decrease a number of voxels that are included in hypo-metabolic regions highlighted in the patient' s brain scan image.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQRbNxIeod4gEKBqm4laK40ZX7MCY_ZSBOSif0_FrxAK7ef5-3NP5WInLzJEW0kVPCCKlM-SPUS1FWW5KNeH1vSxItS8VIofIEq6iVpZ-bjAl5Hsq9cOJAErA2i0RZsflxZbaX86O7NhiKhw4UIKi-u7udOxxd69rT_p_mDYVFPPk</recordid><startdate>20100324</startdate><enddate>20100324</enddate><creator>BUCHERT RALPH</creator><creator>THIELE FRANK O</creator><creator>YOUNG STEWART M</creator><creator>VIK TORBJOERN</creator><creator>WENZEL FABIAN</creator><scope>EVB</scope></search><sort><creationdate>20100324</creationdate><title>Model-based differential diagnosis of dementia and interactive setting of level of significance</title><author>BUCHERT RALPH ; THIELE FRANK O ; YOUNG STEWART M ; VIK TORBJOERN ; WENZEL FABIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN101681515A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2010</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BUCHERT RALPH</creatorcontrib><creatorcontrib>THIELE FRANK O</creatorcontrib><creatorcontrib>YOUNG STEWART M</creatorcontrib><creatorcontrib>VIK TORBJOERN</creatorcontrib><creatorcontrib>WENZEL FABIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BUCHERT RALPH</au><au>THIELE FRANK O</au><au>YOUNG STEWART M</au><au>VIK TORBJOERN</au><au>WENZEL FABIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model-based differential diagnosis of dementia and interactive setting of level of significance</title><date>2010-03-24</date><risdate>2010</risdate><abstract>When detecting and classifying hypo-metabolic regions in the brain to facilitate dementia diagnosis, a patient's brain scan image, generated using an FDG-PET scan, is compared to a plurality of hypo-metabolic region patterns in brain scan images associated with a plurality of types of dementia. In a fully automated mode, the patient's scan is compared to all scans stored in a knowledge base, and atype of dementia associated with a most likely match is output to a user along with a highlighted image of the patient' s brain. In a semi-automated mode, a user specifies two or more types of dementia, and the patient's scan is compared to scans typical of the specified types. Diagnosis information including respective likelihoods for each type is then output to the user. Additionally, the usercan adjust a threshold significance level to increase or decrease a number of voxels that are included in hypo-metabolic regions highlighted in the patient' s brain scan image.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN101681515A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Model-based differential diagnosis of dementia and interactive setting of level of significance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BUCHERT%20RALPH&rft.date=2010-03-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN101681515A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true