Wear-resisting alloy steel with high boron, high chrome and low carbon and preparation method thereof

The invention discloses a wear-resisting alloy steel with high boron, high chrome and low carbon and a preparation method thereof, which comprises the following chemical constituents in weight percent: 0.1-0.5% of C, 3-26% of Cr, 0.5-1.2% of Si, 0.5-1.5% of Mn, 0.3-2.8% of B, 0.3-2.6% of Cu, 0.2-0.6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUO ZHANGQING, DING JIAWEI, DING GANG, FU HANGUANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUO ZHANGQING
DING JIAWEI
DING GANG
FU HANGUANG
description The invention discloses a wear-resisting alloy steel with high boron, high chrome and low carbon and a preparation method thereof, which comprises the following chemical constituents in weight percent: 0.1-0.5% of C, 3-26% of Cr, 0.5-1.2% of Si, 0.5-1.5% of Mn, 0.3-2.8% of B, 0.3-2.6% of Cu, 0.2-0.6% of Ti, 0.02-0.15% of Ca, 0.03-0.25% of Ce, 0.02-0.18% of N, 0.05-0.3% of Nb, 0.04-0.09% of Al, 0.02-0.15% of Mg, 0.04-0.13% of K, less than 0.03% of S, less than 0.04% of P and the balance Fe and unavoidable impurity elements. The method comprises the following steps: melting steel scrap and chromium iron in an electric furnace; adding copper plates, ferrosilicon, ferromanganese into the melted steel scrap and chromium iron, heating the melt to 1560-1620 DEG C after the constituents are adjusted to be qualified in stokehold; adding calcium-silicon alloy and aluminium deoxidation into the melt; and then adding ferrotitanium and ferroboron in sequence, melting and discharging; roasting the compound inoculant compos
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN101660097BB</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN101660097BB</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN101660097BB3</originalsourceid><addsrcrecordid>eNqNirEKwkAQBdNYiPoPi7WBBCFim6BYWQmWYZM8cweX22PvIPj3ivoBVjMDs8xwB2uuiDYm60di5-RJMQGOZpsMGTsa6kTF777eG5UJxH4gJzP1rJ34TwZFYOVk3z0hGRkoGSjksc4WD3YRmx9X2fZ8ujWXHEFaxMA9PFLbXMuirKqiOB7qev_X9AJ2zT9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Wear-resisting alloy steel with high boron, high chrome and low carbon and preparation method thereof</title><source>esp@cenet</source><creator>GUO ZHANGQING ; DING JIAWEI ; DING GANG ; FU HANGUANG</creator><creatorcontrib>GUO ZHANGQING ; DING JIAWEI ; DING GANG ; FU HANGUANG</creatorcontrib><description>The invention discloses a wear-resisting alloy steel with high boron, high chrome and low carbon and a preparation method thereof, which comprises the following chemical constituents in weight percent: 0.1-0.5% of C, 3-26% of Cr, 0.5-1.2% of Si, 0.5-1.5% of Mn, 0.3-2.8% of B, 0.3-2.6% of Cu, 0.2-0.6% of Ti, 0.02-0.15% of Ca, 0.03-0.25% of Ce, 0.02-0.18% of N, 0.05-0.3% of Nb, 0.04-0.09% of Al, 0.02-0.15% of Mg, 0.04-0.13% of K, less than 0.03% of S, less than 0.04% of P and the balance Fe and unavoidable impurity elements. The method comprises the following steps: melting steel scrap and chromium iron in an electric furnace; adding copper plates, ferrosilicon, ferromanganese into the melted steel scrap and chromium iron, heating the melt to 1560-1620 DEG C after the constituents are adjusted to be qualified in stokehold; adding calcium-silicon alloy and aluminium deoxidation into the melt; and then adding ferrotitanium and ferroboron in sequence, melting and discharging; roasting the compound inoculant compos</description><language>chi ; eng</language><subject>ALLOYS ; CASTING ; CASTING OF METALS ; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES ; CHEMISTRY ; CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS ; FERROUS OR NON-FERROUS ALLOYS ; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS ; METALLURGY ; METALLURGY OF IRON ; MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS ; PERFORMING OPERATIONS ; POWDER METALLURGY ; PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OFWROUGHT-IRON OR STEEL ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE ; TRANSPORTING ; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS ; TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20110504&amp;DB=EPODOC&amp;CC=CN&amp;NR=101660097B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20110504&amp;DB=EPODOC&amp;CC=CN&amp;NR=101660097B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUO ZHANGQING</creatorcontrib><creatorcontrib>DING JIAWEI</creatorcontrib><creatorcontrib>DING GANG</creatorcontrib><creatorcontrib>FU HANGUANG</creatorcontrib><title>Wear-resisting alloy steel with high boron, high chrome and low carbon and preparation method thereof</title><description>The invention discloses a wear-resisting alloy steel with high boron, high chrome and low carbon and a preparation method thereof, which comprises the following chemical constituents in weight percent: 0.1-0.5% of C, 3-26% of Cr, 0.5-1.2% of Si, 0.5-1.5% of Mn, 0.3-2.8% of B, 0.3-2.6% of Cu, 0.2-0.6% of Ti, 0.02-0.15% of Ca, 0.03-0.25% of Ce, 0.02-0.18% of N, 0.05-0.3% of Nb, 0.04-0.09% of Al, 0.02-0.15% of Mg, 0.04-0.13% of K, less than 0.03% of S, less than 0.04% of P and the balance Fe and unavoidable impurity elements. The method comprises the following steps: melting steel scrap and chromium iron in an electric furnace; adding copper plates, ferrosilicon, ferromanganese into the melted steel scrap and chromium iron, heating the melt to 1560-1620 DEG C after the constituents are adjusted to be qualified in stokehold; adding calcium-silicon alloy and aluminium deoxidation into the melt; and then adding ferrotitanium and ferroboron in sequence, melting and discharging; roasting the compound inoculant compos</description><subject>ALLOYS</subject><subject>CASTING</subject><subject>CASTING OF METALS</subject><subject>CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES</subject><subject>CHEMISTRY</subject><subject>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</subject><subject>METALLURGY</subject><subject>METALLURGY OF IRON</subject><subject>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</subject><subject>PERFORMING OPERATIONS</subject><subject>POWDER METALLURGY</subject><subject>PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OFWROUGHT-IRON OR STEEL</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><subject>TRANSPORTING</subject><subject>TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2011</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwkAQBdNYiPoPi7WBBCFim6BYWQmWYZM8cweX22PvIPj3ivoBVjMDs8xwB2uuiDYm60di5-RJMQGOZpsMGTsa6kTF777eG5UJxH4gJzP1rJ34TwZFYOVk3z0hGRkoGSjksc4WD3YRmx9X2fZ8ujWXHEFaxMA9PFLbXMuirKqiOB7qev_X9AJ2zT9o</recordid><startdate>20110504</startdate><enddate>20110504</enddate><creator>GUO ZHANGQING</creator><creator>DING JIAWEI</creator><creator>DING GANG</creator><creator>FU HANGUANG</creator><scope>EVB</scope></search><sort><creationdate>20110504</creationdate><title>Wear-resisting alloy steel with high boron, high chrome and low carbon and preparation method thereof</title><author>GUO ZHANGQING ; DING JIAWEI ; DING GANG ; FU HANGUANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN101660097BB3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>ALLOYS</topic><topic>CASTING</topic><topic>CASTING OF METALS</topic><topic>CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES</topic><topic>CHEMISTRY</topic><topic>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</topic><topic>METALLURGY</topic><topic>METALLURGY OF IRON</topic><topic>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</topic><topic>PERFORMING OPERATIONS</topic><topic>POWDER METALLURGY</topic><topic>PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OFWROUGHT-IRON OR STEEL</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</topic><topic>TRANSPORTING</topic><topic>TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUO ZHANGQING</creatorcontrib><creatorcontrib>DING JIAWEI</creatorcontrib><creatorcontrib>DING GANG</creatorcontrib><creatorcontrib>FU HANGUANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUO ZHANGQING</au><au>DING JIAWEI</au><au>DING GANG</au><au>FU HANGUANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Wear-resisting alloy steel with high boron, high chrome and low carbon and preparation method thereof</title><date>2011-05-04</date><risdate>2011</risdate><abstract>The invention discloses a wear-resisting alloy steel with high boron, high chrome and low carbon and a preparation method thereof, which comprises the following chemical constituents in weight percent: 0.1-0.5% of C, 3-26% of Cr, 0.5-1.2% of Si, 0.5-1.5% of Mn, 0.3-2.8% of B, 0.3-2.6% of Cu, 0.2-0.6% of Ti, 0.02-0.15% of Ca, 0.03-0.25% of Ce, 0.02-0.18% of N, 0.05-0.3% of Nb, 0.04-0.09% of Al, 0.02-0.15% of Mg, 0.04-0.13% of K, less than 0.03% of S, less than 0.04% of P and the balance Fe and unavoidable impurity elements. The method comprises the following steps: melting steel scrap and chromium iron in an electric furnace; adding copper plates, ferrosilicon, ferromanganese into the melted steel scrap and chromium iron, heating the melt to 1560-1620 DEG C after the constituents are adjusted to be qualified in stokehold; adding calcium-silicon alloy and aluminium deoxidation into the melt; and then adding ferrotitanium and ferroboron in sequence, melting and discharging; roasting the compound inoculant compos</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN101660097BB
source esp@cenet
subjects ALLOYS
CASTING
CASTING OF METALS
CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
CHEMISTRY
CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS
FERROUS OR NON-FERROUS ALLOYS
GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS
GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC
GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS
MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS
METALLURGY
METALLURGY OF IRON
MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS
PERFORMING OPERATIONS
POWDER METALLURGY
PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OFWROUGHT-IRON OR STEEL
TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE
TRANSPORTING
TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
TREATMENT OF ALLOYS OR NON-FERROUS METALS
title Wear-resisting alloy steel with high boron, high chrome and low carbon and preparation method thereof
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUO%20ZHANGQING&rft.date=2011-05-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN101660097BB%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true