MODELING TDP-43 PROTEINOPATHY

Described herein is the discovery that neither the nuclear localization signal (NLS) nor the prion-like domain (PLD) of TDP-43 is necessary for embryonic stem cell culture and differentiation into motor neurons in vitro. The ability of ES cells to express these TDP-43 mutants and differentiate into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZAMBROWICZ, BRIAN, SHARMA-KANNING, AARTI, FRENDEWEY, DAVID
Format: Patent
Sprache:eng ; fre
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Described herein is the discovery that neither the nuclear localization signal (NLS) nor the prion-like domain (PLD) of TDP-43 is necessary for embryonic stem cell culture and differentiation into motor neurons in vitro. The ability of ES cells to express these TDP-43 mutants and differentiate into motor neurons that exhibit an ALS-like phenotype whereby the TDP-43 mutants redistribute to and aggregate in the cytoplasm and fail to regulate cryptic exon splicing allows these cells to act as a model of TDP-43 proteinopathy for the testing of candidate therapeutic agents that may resolve such proteinopathy. Additionally, these ES cells may be used to successfully generate non-human animals, e.g., mice, that also exhibit hallmark symptoms of ALS and that may be used in testing candidate agents useful in treating TDP-43 proteinopathies.