LEARNING REPRESENTATIONS OF EEG SIGNALS WITH SELF-SUPERVISED LEARNING

Self-supervised learning (SSL) is used to leverage structure in unlabeled data, to learn representations of EEG signals. Two tasks based on temporal context prediction as well as contrastive predictive coding are applied to two clinically-relevant problems: EEG-based sleep staging and pathology dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: AIMONE, CHRISTOPHER ALLEN, JACOB BANVILLE, HUBERT, WOOD, SEAN ULRICH NIETHE
Format: Patent
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!