METHOD FOR INERTING THE ANODES OF FUEL CELLS
A method for inerting and protecting the anodes of fuel cells, especially high-temperature fuel cells, and a fuel cell system, in which, during a shutdown, when the supply of fuel gas to the anodes is interrupted, during emergency shutdown or standby operation, water vapor is supplied to the anodes,...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BEDNARZ, MARC WOSKI, MICHAEL |
description | A method for inerting and protecting the anodes of fuel cells, especially high-temperature fuel cells, and a fuel cell system, in which, during a shutdown, when the supply of fuel gas to the anodes is interrupted, during emergency shutdown or standby operation, water vapor is supplied to the anodes, and an external voltage is applied to the fuel cells to produce a reducing atmosphere at the anodes by electrolysis. This makes it possible to inert the anodes of the fuel cells without having to maintain a supply of a flushing or protective gas expressly for this purpose. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CA2478210C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CA2478210C</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CA2478210C3</originalsourceid><addsrcrecordid>eNrjZNDxdQ3x8HdRcPMPUvD0cw0K8fRzVwjxcFVw9PN3cQ1W8HdTcAt19VFwdvXxCeZhYE1LzClO5YXS3Azybq4hzh66qQX58anFBYnJqXmpJfHOjkYm5hZGhgbOxoRVAADhbCPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD FOR INERTING THE ANODES OF FUEL CELLS</title><source>esp@cenet</source><creator>BEDNARZ, MARC ; WOSKI, MICHAEL</creator><creatorcontrib>BEDNARZ, MARC ; WOSKI, MICHAEL</creatorcontrib><description>A method for inerting and protecting the anodes of fuel cells, especially high-temperature fuel cells, and a fuel cell system, in which, during a shutdown, when the supply of fuel gas to the anodes is interrupted, during emergency shutdown or standby operation, water vapor is supplied to the anodes, and an external voltage is applied to the fuel cells to produce a reducing atmosphere at the anodes by electrolysis. This makes it possible to inert the anodes of the fuel cells without having to maintain a supply of a flushing or protective gas expressly for this purpose.</description><language>eng ; fre</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25 ; NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20111025&DB=EPODOC&CC=CA&NR=2478210C$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20111025&DB=EPODOC&CC=CA&NR=2478210C$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BEDNARZ, MARC</creatorcontrib><creatorcontrib>WOSKI, MICHAEL</creatorcontrib><title>METHOD FOR INERTING THE ANODES OF FUEL CELLS</title><description>A method for inerting and protecting the anodes of fuel cells, especially high-temperature fuel cells, and a fuel cell system, in which, during a shutdown, when the supply of fuel gas to the anodes is interrupted, during emergency shutdown or standby operation, water vapor is supplied to the anodes, and an external voltage is applied to the fuel cells to produce a reducing atmosphere at the anodes by electrolysis. This makes it possible to inert the anodes of the fuel cells without having to maintain a supply of a flushing or protective gas expressly for this purpose.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</subject><subject>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2011</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDxdQ3x8HdRcPMPUvD0cw0K8fRzVwjxcFVw9PN3cQ1W8HdTcAt19VFwdvXxCeZhYE1LzClO5YXS3Azybq4hzh66qQX58anFBYnJqXmpJfHOjkYm5hZGhgbOxoRVAADhbCPg</recordid><startdate>20111025</startdate><enddate>20111025</enddate><creator>BEDNARZ, MARC</creator><creator>WOSKI, MICHAEL</creator><scope>EVB</scope></search><sort><creationdate>20111025</creationdate><title>METHOD FOR INERTING THE ANODES OF FUEL CELLS</title><author>BEDNARZ, MARC ; WOSKI, MICHAEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CA2478210C3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre</language><creationdate>2011</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</topic><topic>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>BEDNARZ, MARC</creatorcontrib><creatorcontrib>WOSKI, MICHAEL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BEDNARZ, MARC</au><au>WOSKI, MICHAEL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD FOR INERTING THE ANODES OF FUEL CELLS</title><date>2011-10-25</date><risdate>2011</risdate><abstract>A method for inerting and protecting the anodes of fuel cells, especially high-temperature fuel cells, and a fuel cell system, in which, during a shutdown, when the supply of fuel gas to the anodes is interrupted, during emergency shutdown or standby operation, water vapor is supplied to the anodes, and an external voltage is applied to the fuel cells to produce a reducing atmosphere at the anodes by electrolysis. This makes it possible to inert the anodes of the fuel cells without having to maintain a supply of a flushing or protective gas expressly for this purpose.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre |
recordid | cdi_epo_espacenet_CA2478210C |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRICITY INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25 NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY |
title | METHOD FOR INERTING THE ANODES OF FUEL CELLS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BEDNARZ,%20MARC&rft.date=2011-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECA2478210C%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |