Deep learning-based variant classifier
DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | COX, Anthony James SCHULZ-TRIEGLAFF, Ole Benjamin FARH, Kai-How |
description | DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good recall and precision using lightweight hardware. For instance, one million training examples of target base variant sites with 50 to 100 reads each can be trained on a single GPU card in less than 10 hours with good recall and precision. A single GPU card is desirable because it a computer with a single GPU is inexpensive, almost universally within reach for users looking at genetic data. It is readily available on could-based platforms. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2023251541A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2023251541A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2023251541A13</originalsourceid><addsrcrecordid>eNrjZFBzSU0tUMhJTSzKy8xL101KLE5NUShLLMpMzCtRSM5JLC7OTMtMLeJhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGOoUYGRsZGpoamJoaOhsbEqQIA_5AoQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based variant classifier</title><source>esp@cenet</source><creator>COX, Anthony James ; SCHULZ-TRIEGLAFF, Ole Benjamin ; FARH, Kai-How</creator><creatorcontrib>COX, Anthony James ; SCHULZ-TRIEGLAFF, Ole Benjamin ; FARH, Kai-How</creatorcontrib><description>DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good recall and precision using lightweight hardware. For instance, one million training examples of target base variant sites with 50 to 100 reads each can be trained on a single GPU card in less than 10 hours with good recall and precision. A single GPU card is desirable because it a computer with a single GPU is inexpensive, almost universally within reach for users looking at genetic data. It is readily available on could-based platforms.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231116&DB=EPODOC&CC=AU&NR=2023251541A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231116&DB=EPODOC&CC=AU&NR=2023251541A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>COX, Anthony James</creatorcontrib><creatorcontrib>SCHULZ-TRIEGLAFF, Ole Benjamin</creatorcontrib><creatorcontrib>FARH, Kai-How</creatorcontrib><title>Deep learning-based variant classifier</title><description>DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good recall and precision using lightweight hardware. For instance, one million training examples of target base variant sites with 50 to 100 reads each can be trained on a single GPU card in less than 10 hours with good recall and precision. A single GPU card is desirable because it a computer with a single GPU is inexpensive, almost universally within reach for users looking at genetic data. It is readily available on could-based platforms.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFBzSU0tUMhJTSzKy8xL101KLE5NUShLLMpMzCtRSM5JLC7OTMtMLeJhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGOoUYGRsZGpoamJoaOhsbEqQIA_5AoQw</recordid><startdate>20231116</startdate><enddate>20231116</enddate><creator>COX, Anthony James</creator><creator>SCHULZ-TRIEGLAFF, Ole Benjamin</creator><creator>FARH, Kai-How</creator><scope>EVB</scope></search><sort><creationdate>20231116</creationdate><title>Deep learning-based variant classifier</title><author>COX, Anthony James ; SCHULZ-TRIEGLAFF, Ole Benjamin ; FARH, Kai-How</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2023251541A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>COX, Anthony James</creatorcontrib><creatorcontrib>SCHULZ-TRIEGLAFF, Ole Benjamin</creatorcontrib><creatorcontrib>FARH, Kai-How</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>COX, Anthony James</au><au>SCHULZ-TRIEGLAFF, Ole Benjamin</au><au>FARH, Kai-How</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based variant classifier</title><date>2023-11-16</date><risdate>2023</risdate><abstract>DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good recall and precision using lightweight hardware. For instance, one million training examples of target base variant sites with 50 to 100 reads each can be trained on a single GPU card in less than 10 hours with good recall and precision. A single GPU card is desirable because it a computer with a single GPU is inexpensive, almost universally within reach for users looking at genetic data. It is readily available on could-based platforms.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_AU2023251541A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | Deep learning-based variant classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=COX,%20Anthony%20James&rft.date=2023-11-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2023251541A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |