Deep learning-based variant classifier

DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: COX, Anthony James, SCHULZ-TRIEGLAFF, Ole Benjamin, FARH, Kai-How
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator COX, Anthony James
SCHULZ-TRIEGLAFF, Ole Benjamin
FARH, Kai-How
description DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good recall and precision using lightweight hardware. For instance, one million training examples of target base variant sites with 50 to 100 reads each can be trained on a single GPU card in less than 10 hours with good recall and precision. A single GPU card is desirable because it a computer with a single GPU is inexpensive, almost universally within reach for users looking at genetic data. It is readily available on could-based platforms.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2023251541A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2023251541A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2023251541A13</originalsourceid><addsrcrecordid>eNrjZFBzSU0tUMhJTSzKy8xL101KLE5NUShLLMpMzCtRSM5JLC7OTMtMLeJhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGOoUYGRsZGpoamJoaOhsbEqQIA_5AoQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based variant classifier</title><source>esp@cenet</source><creator>COX, Anthony James ; SCHULZ-TRIEGLAFF, Ole Benjamin ; FARH, Kai-How</creator><creatorcontrib>COX, Anthony James ; SCHULZ-TRIEGLAFF, Ole Benjamin ; FARH, Kai-How</creatorcontrib><description>DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good recall and precision using lightweight hardware. For instance, one million training examples of target base variant sites with 50 to 100 reads each can be trained on a single GPU card in less than 10 hours with good recall and precision. A single GPU card is desirable because it a computer with a single GPU is inexpensive, almost universally within reach for users looking at genetic data. It is readily available on could-based platforms.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231116&amp;DB=EPODOC&amp;CC=AU&amp;NR=2023251541A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231116&amp;DB=EPODOC&amp;CC=AU&amp;NR=2023251541A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>COX, Anthony James</creatorcontrib><creatorcontrib>SCHULZ-TRIEGLAFF, Ole Benjamin</creatorcontrib><creatorcontrib>FARH, Kai-How</creatorcontrib><title>Deep learning-based variant classifier</title><description>DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good recall and precision using lightweight hardware. For instance, one million training examples of target base variant sites with 50 to 100 reads each can be trained on a single GPU card in less than 10 hours with good recall and precision. A single GPU card is desirable because it a computer with a single GPU is inexpensive, almost universally within reach for users looking at genetic data. It is readily available on could-based platforms.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFBzSU0tUMhJTSzKy8xL101KLE5NUShLLMpMzCtRSM5JLC7OTMtMLeJhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGOoUYGRsZGpoamJoaOhsbEqQIA_5AoQw</recordid><startdate>20231116</startdate><enddate>20231116</enddate><creator>COX, Anthony James</creator><creator>SCHULZ-TRIEGLAFF, Ole Benjamin</creator><creator>FARH, Kai-How</creator><scope>EVB</scope></search><sort><creationdate>20231116</creationdate><title>Deep learning-based variant classifier</title><author>COX, Anthony James ; SCHULZ-TRIEGLAFF, Ole Benjamin ; FARH, Kai-How</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2023251541A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>COX, Anthony James</creatorcontrib><creatorcontrib>SCHULZ-TRIEGLAFF, Ole Benjamin</creatorcontrib><creatorcontrib>FARH, Kai-How</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>COX, Anthony James</au><au>SCHULZ-TRIEGLAFF, Ole Benjamin</au><au>FARH, Kai-How</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based variant classifier</title><date>2023-11-16</date><risdate>2023</risdate><abstract>DEEP LEARNING-BASED VARIANT CLASSIFIER The technology disclosed directly operates on sequencing data and derives its own feature filters. It processes a plurality of aligned reads that span a target base position. It combines elegant encoding of the reads with a lightweight analysis to produce good recall and precision using lightweight hardware. For instance, one million training examples of target base variant sites with 50 to 100 reads each can be trained on a single GPU card in less than 10 hours with good recall and precision. A single GPU card is desirable because it a computer with a single GPU is inexpensive, almost universally within reach for users looking at genetic data. It is readily available on could-based platforms.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2023251541A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Deep learning-based variant classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=COX,%20Anthony%20James&rft.date=2023-11-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2023251541A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true