Systems and methods for tuning optical cavities using machine learning techniques
An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained f...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FRITZ, Michelle FLAMENT, Mael SEKELSKY, Rourke NAMAZI, Mehdi BELLO PORTMANN, Gabriel |
description | An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained from the optical cavity to determine a degree of misalignment of the optical cavity; and determining, using a reinforcement learning (RL) model, the tuning parameter based on the degree of misalignment of the optical cavity. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2021329337A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2021329337A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2021329337A13</originalsourceid><addsrcrecordid>eNqNyj0KAjEQQOE0FqLeYcBacJNCLJdFsRW1XobsrAnkz52J4O1F8QBWDx7fXJ0vLxaKDJgGiCQuDwxjnkBq8ukOuYi3GMDi04snhsqfHdE6nwgC4fR1QtYl_6jESzUbMTCtfl2o9fFw7U4bKrknLmgpkfTtTW91Y_TemF3bmP_UG_RoOQs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for tuning optical cavities using machine learning techniques</title><source>esp@cenet</source><creator>FRITZ, Michelle ; FLAMENT, Mael ; SEKELSKY, Rourke ; NAMAZI, Mehdi ; BELLO PORTMANN, Gabriel</creator><creatorcontrib>FRITZ, Michelle ; FLAMENT, Mael ; SEKELSKY, Rourke ; NAMAZI, Mehdi ; BELLO PORTMANN, Gabriel</creatorcontrib><description>An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained from the optical cavity to determine a degree of misalignment of the optical cavity; and determining, using a reinforcement learning (RL) model, the tuning parameter based on the degree of misalignment of the optical cavity.</description><language>eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; ELECTRICITY ; IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PHYSICS ; RESONATORS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230202&DB=EPODOC&CC=AU&NR=2021329337A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230202&DB=EPODOC&CC=AU&NR=2021329337A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FRITZ, Michelle</creatorcontrib><creatorcontrib>FLAMENT, Mael</creatorcontrib><creatorcontrib>SEKELSKY, Rourke</creatorcontrib><creatorcontrib>NAMAZI, Mehdi</creatorcontrib><creatorcontrib>BELLO PORTMANN, Gabriel</creatorcontrib><title>Systems and methods for tuning optical cavities using machine learning techniques</title><description>An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained from the optical cavity to determine a degree of misalignment of the optical cavity; and determining, using a reinforcement learning (RL) model, the tuning parameter based on the degree of misalignment of the optical cavity.</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>ELECTRICITY</subject><subject>IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PHYSICS</subject><subject>RESONATORS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KAjEQQOE0FqLeYcBacJNCLJdFsRW1XobsrAnkz52J4O1F8QBWDx7fXJ0vLxaKDJgGiCQuDwxjnkBq8ukOuYi3GMDi04snhsqfHdE6nwgC4fR1QtYl_6jESzUbMTCtfl2o9fFw7U4bKrknLmgpkfTtTW91Y_TemF3bmP_UG_RoOQs</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>FRITZ, Michelle</creator><creator>FLAMENT, Mael</creator><creator>SEKELSKY, Rourke</creator><creator>NAMAZI, Mehdi</creator><creator>BELLO PORTMANN, Gabriel</creator><scope>EVB</scope></search><sort><creationdate>20230202</creationdate><title>Systems and methods for tuning optical cavities using machine learning techniques</title><author>FRITZ, Michelle ; FLAMENT, Mael ; SEKELSKY, Rourke ; NAMAZI, Mehdi ; BELLO PORTMANN, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2021329337A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>ELECTRICITY</topic><topic>IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PHYSICS</topic><topic>RESONATORS</topic><toplevel>online_resources</toplevel><creatorcontrib>FRITZ, Michelle</creatorcontrib><creatorcontrib>FLAMENT, Mael</creatorcontrib><creatorcontrib>SEKELSKY, Rourke</creatorcontrib><creatorcontrib>NAMAZI, Mehdi</creatorcontrib><creatorcontrib>BELLO PORTMANN, Gabriel</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FRITZ, Michelle</au><au>FLAMENT, Mael</au><au>SEKELSKY, Rourke</au><au>NAMAZI, Mehdi</au><au>BELLO PORTMANN, Gabriel</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for tuning optical cavities using machine learning techniques</title><date>2023-02-02</date><risdate>2023</risdate><abstract>An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained from the optical cavity to determine a degree of misalignment of the optical cavity; and determining, using a reinforcement learning (RL) model, the tuning parameter based on the degree of misalignment of the optical cavity.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_AU2021329337A1 |
source | esp@cenet |
subjects | BASIC ELECTRONIC CIRCUITRY ELECTRICITY IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS OPTICS PHYSICS RESONATORS |
title | Systems and methods for tuning optical cavities using machine learning techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FRITZ,%20Michelle&rft.date=2023-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2021329337A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |