Systems and methods for tuning optical cavities using machine learning techniques

An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FRITZ, Michelle, FLAMENT, Mael, SEKELSKY, Rourke, NAMAZI, Mehdi, BELLO PORTMANN, Gabriel
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FRITZ, Michelle
FLAMENT, Mael
SEKELSKY, Rourke
NAMAZI, Mehdi
BELLO PORTMANN, Gabriel
description An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained from the optical cavity to determine a degree of misalignment of the optical cavity; and determining, using a reinforcement learning (RL) model, the tuning parameter based on the degree of misalignment of the optical cavity.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2021329337A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2021329337A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2021329337A13</originalsourceid><addsrcrecordid>eNqNyj0KAjEQQOE0FqLeYcBacJNCLJdFsRW1XobsrAnkz52J4O1F8QBWDx7fXJ0vLxaKDJgGiCQuDwxjnkBq8ukOuYi3GMDi04snhsqfHdE6nwgC4fR1QtYl_6jESzUbMTCtfl2o9fFw7U4bKrknLmgpkfTtTW91Y_TemF3bmP_UG_RoOQs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for tuning optical cavities using machine learning techniques</title><source>esp@cenet</source><creator>FRITZ, Michelle ; FLAMENT, Mael ; SEKELSKY, Rourke ; NAMAZI, Mehdi ; BELLO PORTMANN, Gabriel</creator><creatorcontrib>FRITZ, Michelle ; FLAMENT, Mael ; SEKELSKY, Rourke ; NAMAZI, Mehdi ; BELLO PORTMANN, Gabriel</creatorcontrib><description>An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained from the optical cavity to determine a degree of misalignment of the optical cavity; and determining, using a reinforcement learning (RL) model, the tuning parameter based on the degree of misalignment of the optical cavity.</description><language>eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; ELECTRICITY ; IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PHYSICS ; RESONATORS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230202&amp;DB=EPODOC&amp;CC=AU&amp;NR=2021329337A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230202&amp;DB=EPODOC&amp;CC=AU&amp;NR=2021329337A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FRITZ, Michelle</creatorcontrib><creatorcontrib>FLAMENT, Mael</creatorcontrib><creatorcontrib>SEKELSKY, Rourke</creatorcontrib><creatorcontrib>NAMAZI, Mehdi</creatorcontrib><creatorcontrib>BELLO PORTMANN, Gabriel</creatorcontrib><title>Systems and methods for tuning optical cavities using machine learning techniques</title><description>An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained from the optical cavity to determine a degree of misalignment of the optical cavity; and determining, using a reinforcement learning (RL) model, the tuning parameter based on the degree of misalignment of the optical cavity.</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>ELECTRICITY</subject><subject>IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PHYSICS</subject><subject>RESONATORS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KAjEQQOE0FqLeYcBacJNCLJdFsRW1XobsrAnkz52J4O1F8QBWDx7fXJ0vLxaKDJgGiCQuDwxjnkBq8ukOuYi3GMDi04snhsqfHdE6nwgC4fR1QtYl_6jESzUbMTCtfl2o9fFw7U4bKrknLmgpkfTtTW91Y_TemF3bmP_UG_RoOQs</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>FRITZ, Michelle</creator><creator>FLAMENT, Mael</creator><creator>SEKELSKY, Rourke</creator><creator>NAMAZI, Mehdi</creator><creator>BELLO PORTMANN, Gabriel</creator><scope>EVB</scope></search><sort><creationdate>20230202</creationdate><title>Systems and methods for tuning optical cavities using machine learning techniques</title><author>FRITZ, Michelle ; FLAMENT, Mael ; SEKELSKY, Rourke ; NAMAZI, Mehdi ; BELLO PORTMANN, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2021329337A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>ELECTRICITY</topic><topic>IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PHYSICS</topic><topic>RESONATORS</topic><toplevel>online_resources</toplevel><creatorcontrib>FRITZ, Michelle</creatorcontrib><creatorcontrib>FLAMENT, Mael</creatorcontrib><creatorcontrib>SEKELSKY, Rourke</creatorcontrib><creatorcontrib>NAMAZI, Mehdi</creatorcontrib><creatorcontrib>BELLO PORTMANN, Gabriel</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FRITZ, Michelle</au><au>FLAMENT, Mael</au><au>SEKELSKY, Rourke</au><au>NAMAZI, Mehdi</au><au>BELLO PORTMANN, Gabriel</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for tuning optical cavities using machine learning techniques</title><date>2023-02-02</date><risdate>2023</risdate><abstract>An optical system including an optical cavity and a method of tuning an optical cavity using a machine learning model is provided. The method includes determining a tuning parameter of the optical cavity by: analyzing, using a convolutional neural network (CNN) model, a measurement signal obtained from the optical cavity to determine a degree of misalignment of the optical cavity; and determining, using a reinforcement learning (RL) model, the tuning parameter based on the degree of misalignment of the optical cavity.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2021329337A1
source esp@cenet
subjects BASIC ELECTRONIC CIRCUITRY
ELECTRICITY
IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS
OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
OPTICS
PHYSICS
RESONATORS
title Systems and methods for tuning optical cavities using machine learning techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FRITZ,%20Michelle&rft.date=2023-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2021329337A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true