Method and apparatus for detecting spoofing conditions
Abstract An automated speaker verification (ASV) system incorporates a first deep neural network to extract deep acoustic features, such as deep CQCC features, from a received voice sample. The deep acoustic features are processed by a second deep neural network that classifies the deep acoustic fea...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KHOURY, Elie NAGARSHETH, Parav GARLAND, Matthew PATIL, Kailash |
description | Abstract An automated speaker verification (ASV) system incorporates a first deep neural network to extract deep acoustic features, such as deep CQCC features, from a received voice sample. The deep acoustic features are processed by a second deep neural network that classifies the deep acoustic features according to a determined likelihood of including a spoofing condition. A binary classifier then classifies the voice sample as being genuine or spoofed. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2021277642A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2021277642A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2021277642A13</originalsourceid><addsrcrecordid>eNrjZDDzTS3JyE9RSMwD4oKCxKLEktJihbT8IoWU1JLU5JLMvHSF4oL8_DQQIzk_LyWzJDM_r5iHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsQ7hhoZGBkamZubmRg5GhoTpwoAbQousQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and apparatus for detecting spoofing conditions</title><source>esp@cenet</source><creator>KHOURY, Elie ; NAGARSHETH, Parav ; GARLAND, Matthew ; PATIL, Kailash</creator><creatorcontrib>KHOURY, Elie ; NAGARSHETH, Parav ; GARLAND, Matthew ; PATIL, Kailash</creatorcontrib><description>Abstract An automated speaker verification (ASV) system incorporates a first deep neural network to extract deep acoustic features, such as deep CQCC features, from a received voice sample. The deep acoustic features are processed by a second deep neural network that classifies the deep acoustic features according to a determined likelihood of including a spoofing condition. A binary classifier then classifies the voice sample as being genuine or spoofed.</description><language>eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211223&DB=EPODOC&CC=AU&NR=2021277642A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211223&DB=EPODOC&CC=AU&NR=2021277642A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KHOURY, Elie</creatorcontrib><creatorcontrib>NAGARSHETH, Parav</creatorcontrib><creatorcontrib>GARLAND, Matthew</creatorcontrib><creatorcontrib>PATIL, Kailash</creatorcontrib><title>Method and apparatus for detecting spoofing conditions</title><description>Abstract An automated speaker verification (ASV) system incorporates a first deep neural network to extract deep acoustic features, such as deep CQCC features, from a received voice sample. The deep acoustic features are processed by a second deep neural network that classifies the deep acoustic features according to a determined likelihood of including a spoofing condition. A binary classifier then classifies the voice sample as being genuine or spoofed.</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDzTS3JyE9RSMwD4oKCxKLEktJihbT8IoWU1JLU5JLMvHSF4oL8_DQQIzk_LyWzJDM_r5iHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsQ7hhoZGBkamZubmRg5GhoTpwoAbQousQ</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>KHOURY, Elie</creator><creator>NAGARSHETH, Parav</creator><creator>GARLAND, Matthew</creator><creator>PATIL, Kailash</creator><scope>EVB</scope></search><sort><creationdate>20211223</creationdate><title>Method and apparatus for detecting spoofing conditions</title><author>KHOURY, Elie ; NAGARSHETH, Parav ; GARLAND, Matthew ; PATIL, Kailash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2021277642A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>KHOURY, Elie</creatorcontrib><creatorcontrib>NAGARSHETH, Parav</creatorcontrib><creatorcontrib>GARLAND, Matthew</creatorcontrib><creatorcontrib>PATIL, Kailash</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KHOURY, Elie</au><au>NAGARSHETH, Parav</au><au>GARLAND, Matthew</au><au>PATIL, Kailash</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and apparatus for detecting spoofing conditions</title><date>2021-12-23</date><risdate>2021</risdate><abstract>Abstract An automated speaker verification (ASV) system incorporates a first deep neural network to extract deep acoustic features, such as deep CQCC features, from a received voice sample. The deep acoustic features are processed by a second deep neural network that classifies the deep acoustic features according to a determined likelihood of including a spoofing condition. A binary classifier then classifies the voice sample as being genuine or spoofed.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_AU2021277642A1 |
source | esp@cenet |
subjects | ACOUSTICS MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Method and apparatus for detecting spoofing conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KHOURY,%20Elie&rft.date=2021-12-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2021277642A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |