Selectively generating word vector and paragraph vector representations of fields for machine learning

Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ganapathy, Chitrabharathi, Thakur, Aniruddha Madhusudan, Govindarajan, Kannan, Jayaraman, Baskar, Ramanna, Shiva Shankar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ganapathy, Chitrabharathi
Thakur, Aniruddha Madhusudan
Govindarajan, Kannan
Jayaraman, Baskar
Ramanna, Shiva Shankar
description Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence, paragraph, or other multi-word sample of text. Word and paragraph vectors can be used for sentiment analysis, comparison of the topic or content of samples of text, or other natural language processing tasks. However, the generation of word and paragraph vectors can be computationally expensive. Accordingly, word and paragraph vectors can be determined only for user-specified subsets of fields of incident reports in a database.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2021203179BB2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2021203179BB2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2021203179BB23</originalsourceid><addsrcrecordid>eNqNjTELwjAUhLs4iPof3uAqtOkgjlYUd3Uuj_TSBmISXkLFf28G3Z0O7vu4W1bmBged7Qz3phEewtn6kV5BBpoLCULsB4osPArH6VcKoiDB5-IHnygYMhZuSGQKfbKerAc5sPiyt64Whl3C5purans530_XHWLokSLrcp3740PVqlF12-wPXafaP7UPbl9Bsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Selectively generating word vector and paragraph vector representations of fields for machine learning</title><source>esp@cenet</source><creator>Ganapathy, Chitrabharathi ; Thakur, Aniruddha Madhusudan ; Govindarajan, Kannan ; Jayaraman, Baskar ; Ramanna, Shiva Shankar</creator><creatorcontrib>Ganapathy, Chitrabharathi ; Thakur, Aniruddha Madhusudan ; Govindarajan, Kannan ; Jayaraman, Baskar ; Ramanna, Shiva Shankar</creatorcontrib><description>Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence, paragraph, or other multi-word sample of text. Word and paragraph vectors can be used for sentiment analysis, comparison of the topic or content of samples of text, or other natural language processing tasks. However, the generation of word and paragraph vectors can be computationally expensive. Accordingly, word and paragraph vectors can be determined only for user-specified subsets of fields of incident reports in a database.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220630&amp;DB=EPODOC&amp;CC=AU&amp;NR=2021203179B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220630&amp;DB=EPODOC&amp;CC=AU&amp;NR=2021203179B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ganapathy, Chitrabharathi</creatorcontrib><creatorcontrib>Thakur, Aniruddha Madhusudan</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><creatorcontrib>Ramanna, Shiva Shankar</creatorcontrib><title>Selectively generating word vector and paragraph vector representations of fields for machine learning</title><description>Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence, paragraph, or other multi-word sample of text. Word and paragraph vectors can be used for sentiment analysis, comparison of the topic or content of samples of text, or other natural language processing tasks. However, the generation of word and paragraph vectors can be computationally expensive. Accordingly, word and paragraph vectors can be determined only for user-specified subsets of fields of incident reports in a database.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTELwjAUhLs4iPof3uAqtOkgjlYUd3Uuj_TSBmISXkLFf28G3Z0O7vu4W1bmBged7Qz3phEewtn6kV5BBpoLCULsB4osPArH6VcKoiDB5-IHnygYMhZuSGQKfbKerAc5sPiyt64Whl3C5purans530_XHWLokSLrcp3740PVqlF12-wPXafaP7UPbl9Bsw</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Ganapathy, Chitrabharathi</creator><creator>Thakur, Aniruddha Madhusudan</creator><creator>Govindarajan, Kannan</creator><creator>Jayaraman, Baskar</creator><creator>Ramanna, Shiva Shankar</creator><scope>EVB</scope></search><sort><creationdate>20220630</creationdate><title>Selectively generating word vector and paragraph vector representations of fields for machine learning</title><author>Ganapathy, Chitrabharathi ; Thakur, Aniruddha Madhusudan ; Govindarajan, Kannan ; Jayaraman, Baskar ; Ramanna, Shiva Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2021203179BB23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganapathy, Chitrabharathi</creatorcontrib><creatorcontrib>Thakur, Aniruddha Madhusudan</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><creatorcontrib>Ramanna, Shiva Shankar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ganapathy, Chitrabharathi</au><au>Thakur, Aniruddha Madhusudan</au><au>Govindarajan, Kannan</au><au>Jayaraman, Baskar</au><au>Ramanna, Shiva Shankar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Selectively generating word vector and paragraph vector representations of fields for machine learning</title><date>2022-06-30</date><risdate>2022</risdate><abstract>Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence, paragraph, or other multi-word sample of text. Word and paragraph vectors can be used for sentiment analysis, comparison of the topic or content of samples of text, or other natural language processing tasks. However, the generation of word and paragraph vectors can be computationally expensive. Accordingly, word and paragraph vectors can be determined only for user-specified subsets of fields of incident reports in a database.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2021203179BB2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Selectively generating word vector and paragraph vector representations of fields for machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ganapathy,%20Chitrabharathi&rft.date=2022-06-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2021203179BB2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true