Selectively generating word vector and paragraph vector representations of fields for machine learning
Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ganapathy, Chitrabharathi Thakur, Aniruddha Madhusudan Govindarajan, Kannan Jayaraman, Baskar Ramanna, Shiva Shankar |
description | Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence, paragraph, or other multi-word sample of text. Word and paragraph vectors can be used for sentiment analysis, comparison of the topic or content of samples of text, or other natural language processing tasks. However, the generation of word and paragraph vectors can be computationally expensive. Accordingly, word and paragraph vectors can be determined only for user-specified subsets of fields of incident reports in a database. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2021203179BB2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2021203179BB2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2021203179BB23</originalsourceid><addsrcrecordid>eNqNjTELwjAUhLs4iPof3uAqtOkgjlYUd3Uuj_TSBmISXkLFf28G3Z0O7vu4W1bmBged7Qz3phEewtn6kV5BBpoLCULsB4osPArH6VcKoiDB5-IHnygYMhZuSGQKfbKerAc5sPiyt64Whl3C5purans530_XHWLokSLrcp3740PVqlF12-wPXafaP7UPbl9Bsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Selectively generating word vector and paragraph vector representations of fields for machine learning</title><source>esp@cenet</source><creator>Ganapathy, Chitrabharathi ; Thakur, Aniruddha Madhusudan ; Govindarajan, Kannan ; Jayaraman, Baskar ; Ramanna, Shiva Shankar</creator><creatorcontrib>Ganapathy, Chitrabharathi ; Thakur, Aniruddha Madhusudan ; Govindarajan, Kannan ; Jayaraman, Baskar ; Ramanna, Shiva Shankar</creatorcontrib><description>Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence, paragraph, or other multi-word sample of text. Word and paragraph vectors can be used for sentiment analysis, comparison of the topic or content of samples of text, or other natural language processing tasks. However, the generation of word and paragraph vectors can be computationally expensive. Accordingly, word and paragraph vectors can be determined only for user-specified subsets of fields of incident reports in a database.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220630&DB=EPODOC&CC=AU&NR=2021203179B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220630&DB=EPODOC&CC=AU&NR=2021203179B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ganapathy, Chitrabharathi</creatorcontrib><creatorcontrib>Thakur, Aniruddha Madhusudan</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><creatorcontrib>Ramanna, Shiva Shankar</creatorcontrib><title>Selectively generating word vector and paragraph vector representations of fields for machine learning</title><description>Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence, paragraph, or other multi-word sample of text. Word and paragraph vectors can be used for sentiment analysis, comparison of the topic or content of samples of text, or other natural language processing tasks. However, the generation of word and paragraph vectors can be computationally expensive. Accordingly, word and paragraph vectors can be determined only for user-specified subsets of fields of incident reports in a database.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTELwjAUhLs4iPof3uAqtOkgjlYUd3Uuj_TSBmISXkLFf28G3Z0O7vu4W1bmBged7Qz3phEewtn6kV5BBpoLCULsB4osPArH6VcKoiDB5-IHnygYMhZuSGQKfbKerAc5sPiyt64Whl3C5purans530_XHWLokSLrcp3740PVqlF12-wPXafaP7UPbl9Bsw</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Ganapathy, Chitrabharathi</creator><creator>Thakur, Aniruddha Madhusudan</creator><creator>Govindarajan, Kannan</creator><creator>Jayaraman, Baskar</creator><creator>Ramanna, Shiva Shankar</creator><scope>EVB</scope></search><sort><creationdate>20220630</creationdate><title>Selectively generating word vector and paragraph vector representations of fields for machine learning</title><author>Ganapathy, Chitrabharathi ; Thakur, Aniruddha Madhusudan ; Govindarajan, Kannan ; Jayaraman, Baskar ; Ramanna, Shiva Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2021203179BB23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganapathy, Chitrabharathi</creatorcontrib><creatorcontrib>Thakur, Aniruddha Madhusudan</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><creatorcontrib>Ramanna, Shiva Shankar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ganapathy, Chitrabharathi</au><au>Thakur, Aniruddha Madhusudan</au><au>Govindarajan, Kannan</au><au>Jayaraman, Baskar</au><au>Ramanna, Shiva Shankar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Selectively generating word vector and paragraph vector representations of fields for machine learning</title><date>2022-06-30</date><risdate>2022</risdate><abstract>Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space; paragraph vectors extend word vectors to represent, in the same semantically-encoded space, the overall semantic content and context of a phrase, sentence, paragraph, or other multi-word sample of text. Word and paragraph vectors can be used for sentiment analysis, comparison of the topic or content of samples of text, or other natural language processing tasks. However, the generation of word and paragraph vectors can be computationally expensive. Accordingly, word and paragraph vectors can be determined only for user-specified subsets of fields of incident reports in a database.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_AU2021203179BB2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Selectively generating word vector and paragraph vector representations of fields for machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ganapathy,%20Chitrabharathi&rft.date=2022-06-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2021203179BB2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |