HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK

HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK Many artificial intelligence applications, such as signal processing and personal computer vision, utilize deep learning. The main social issues are consultation with the fundamental aspects of life and communication difficult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rane, Kantilal P, Bhatnagar, Shaleen, B., Prasanalakshmi, Hati, Ananda Shankar, Bhaskar, Thupakula, Gagnani, Lokesh P, Chakrabarti, Prasun, Karthikeyan, V, Navuluri, Mohanarao, Acharjya, Pinaki Pratim, Prakash, A, Balasubramaniyan, K
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rane, Kantilal P
Bhatnagar, Shaleen
B., Prasanalakshmi
Hati, Ananda Shankar
Bhaskar, Thupakula
Gagnani, Lokesh P
Chakrabarti, Prasun
Karthikeyan, V
Navuluri, Mohanarao
Acharjya, Pinaki Pratim
Prakash, A
Balasubramaniyan, K
description HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK Many artificial intelligence applications, such as signal processing and personal computer vision, utilize deep learning. The main social issues are consultation with the fundamental aspects of life and communication difficulties. Even though the issue has been addressed via improvements in gestures and gesture detection through programmed communication, an appropriate solution has yet to be found. This innovation employs a gesture acknowledgment paradigm that takes use of spatially transitory hand-based data. Hand identification and sign recognition are the foundational accurate and productive models used in this invention.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2021104072A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2021104072A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2021104072A43</originalsourceid><addsrcrecordid>eNrjZPD0cPRzUQj2cAxwVQCzPN39FIJcnf3d_TxDPP39FNyC_H0VwjxdXP0VQoM9_dwVXFxdAxSc_f3C_H1CwSr8XEPC_YO8eRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJvGOokYGRoaGBiYG5kaOJMXGqAM88LdY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK</title><source>esp@cenet</source><creator>Rane, Kantilal P ; Bhatnagar, Shaleen ; B., Prasanalakshmi ; Hati, Ananda Shankar ; Bhaskar, Thupakula ; Gagnani, Lokesh P ; Chakrabarti, Prasun ; Karthikeyan, V ; Navuluri, Mohanarao ; Acharjya, Pinaki Pratim ; Prakash, A ; Balasubramaniyan, K</creator><creatorcontrib>Rane, Kantilal P ; Bhatnagar, Shaleen ; B., Prasanalakshmi ; Hati, Ananda Shankar ; Bhaskar, Thupakula ; Gagnani, Lokesh P ; Chakrabarti, Prasun ; Karthikeyan, V ; Navuluri, Mohanarao ; Acharjya, Pinaki Pratim ; Prakash, A ; Balasubramaniyan, K</creatorcontrib><description>HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK Many artificial intelligence applications, such as signal processing and personal computer vision, utilize deep learning. The main social issues are consultation with the fundamental aspects of life and communication difficulties. Even though the issue has been addressed via improvements in gestures and gesture detection through programmed communication, an appropriate solution has yet to be found. This innovation employs a gesture acknowledgment paradigm that takes use of spatially transitory hand-based data. Hand identification and sign recognition are the foundational accurate and productive models used in this invention.</description><language>eng</language><subject>ADVERTISING ; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; CRYPTOGRAPHY ; DIAGRAMS ; DISPLAY ; EDUCATION ; EDUCATIONAL OR DEMONSTRATION APPLIANCES ; GLOBES ; HANDLING RECORD CARRIERS ; PHYSICS ; PLANETARIA ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SEALS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210909&amp;DB=EPODOC&amp;CC=AU&amp;NR=2021104072A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25546,76297</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210909&amp;DB=EPODOC&amp;CC=AU&amp;NR=2021104072A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rane, Kantilal P</creatorcontrib><creatorcontrib>Bhatnagar, Shaleen</creatorcontrib><creatorcontrib>B., Prasanalakshmi</creatorcontrib><creatorcontrib>Hati, Ananda Shankar</creatorcontrib><creatorcontrib>Bhaskar, Thupakula</creatorcontrib><creatorcontrib>Gagnani, Lokesh P</creatorcontrib><creatorcontrib>Chakrabarti, Prasun</creatorcontrib><creatorcontrib>Karthikeyan, V</creatorcontrib><creatorcontrib>Navuluri, Mohanarao</creatorcontrib><creatorcontrib>Acharjya, Pinaki Pratim</creatorcontrib><creatorcontrib>Prakash, A</creatorcontrib><creatorcontrib>Balasubramaniyan, K</creatorcontrib><title>HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK</title><description>HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK Many artificial intelligence applications, such as signal processing and personal computer vision, utilize deep learning. The main social issues are consultation with the fundamental aspects of life and communication difficulties. Even though the issue has been addressed via improvements in gestures and gesture detection through programmed communication, an appropriate solution has yet to be found. This innovation employs a gesture acknowledgment paradigm that takes use of spatially transitory hand-based data. Hand identification and sign recognition are the foundational accurate and productive models used in this invention.</description><subject>ADVERTISING</subject><subject>APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>CRYPTOGRAPHY</subject><subject>DIAGRAMS</subject><subject>DISPLAY</subject><subject>EDUCATION</subject><subject>EDUCATIONAL OR DEMONSTRATION APPLIANCES</subject><subject>GLOBES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PLANETARIA</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SEALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD0cPRzUQj2cAxwVQCzPN39FIJcnf3d_TxDPP39FNyC_H0VwjxdXP0VQoM9_dwVXFxdAxSc_f3C_H1CwSr8XEPC_YO8eRhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJvGOokYGRoaGBiYG5kaOJMXGqAM88LdY</recordid><startdate>20210909</startdate><enddate>20210909</enddate><creator>Rane, Kantilal P</creator><creator>Bhatnagar, Shaleen</creator><creator>B., Prasanalakshmi</creator><creator>Hati, Ananda Shankar</creator><creator>Bhaskar, Thupakula</creator><creator>Gagnani, Lokesh P</creator><creator>Chakrabarti, Prasun</creator><creator>Karthikeyan, V</creator><creator>Navuluri, Mohanarao</creator><creator>Acharjya, Pinaki Pratim</creator><creator>Prakash, A</creator><creator>Balasubramaniyan, K</creator><scope>EVB</scope></search><sort><creationdate>20210909</creationdate><title>HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK</title><author>Rane, Kantilal P ; Bhatnagar, Shaleen ; B., Prasanalakshmi ; Hati, Ananda Shankar ; Bhaskar, Thupakula ; Gagnani, Lokesh P ; Chakrabarti, Prasun ; Karthikeyan, V ; Navuluri, Mohanarao ; Acharjya, Pinaki Pratim ; Prakash, A ; Balasubramaniyan, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2021104072A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ADVERTISING</topic><topic>APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>CRYPTOGRAPHY</topic><topic>DIAGRAMS</topic><topic>DISPLAY</topic><topic>EDUCATION</topic><topic>EDUCATIONAL OR DEMONSTRATION APPLIANCES</topic><topic>GLOBES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PLANETARIA</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SEALS</topic><toplevel>online_resources</toplevel><creatorcontrib>Rane, Kantilal P</creatorcontrib><creatorcontrib>Bhatnagar, Shaleen</creatorcontrib><creatorcontrib>B., Prasanalakshmi</creatorcontrib><creatorcontrib>Hati, Ananda Shankar</creatorcontrib><creatorcontrib>Bhaskar, Thupakula</creatorcontrib><creatorcontrib>Gagnani, Lokesh P</creatorcontrib><creatorcontrib>Chakrabarti, Prasun</creatorcontrib><creatorcontrib>Karthikeyan, V</creatorcontrib><creatorcontrib>Navuluri, Mohanarao</creatorcontrib><creatorcontrib>Acharjya, Pinaki Pratim</creatorcontrib><creatorcontrib>Prakash, A</creatorcontrib><creatorcontrib>Balasubramaniyan, K</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rane, Kantilal P</au><au>Bhatnagar, Shaleen</au><au>B., Prasanalakshmi</au><au>Hati, Ananda Shankar</au><au>Bhaskar, Thupakula</au><au>Gagnani, Lokesh P</au><au>Chakrabarti, Prasun</au><au>Karthikeyan, V</au><au>Navuluri, Mohanarao</au><au>Acharjya, Pinaki Pratim</au><au>Prakash, A</au><au>Balasubramaniyan, K</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK</title><date>2021-09-09</date><risdate>2021</risdate><abstract>HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK Many artificial intelligence applications, such as signal processing and personal computer vision, utilize deep learning. The main social issues are consultation with the fundamental aspects of life and communication difficulties. Even though the issue has been addressed via improvements in gestures and gesture detection through programmed communication, an appropriate solution has yet to be found. This innovation employs a gesture acknowledgment paradigm that takes use of spatially transitory hand-based data. Hand identification and sign recognition are the foundational accurate and productive models used in this invention.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2021104072A4
source esp@cenet
subjects ADVERTISING
APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
CRYPTOGRAPHY
DIAGRAMS
DISPLAY
EDUCATION
EDUCATIONAL OR DEMONSTRATION APPLIANCES
GLOBES
HANDLING RECORD CARRIERS
PHYSICS
PLANETARIA
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SEALS
title HAND SHAPE AND SIGN RECOGNITION FROM VIDEO USING DEEP CONVOLUTION NETWORK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rane,%20Kantilal%20P&rft.date=2021-09-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2021104072A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true