Efficient artificial intelligence analysis of images with combined predictive modeling
A system, an image analyzer and a method for diagnosing a presence of a disease or a condition in an image of a subject, for example, a veterinary patient, are provided including: classifying the image to a body region, and obtaining a classified, labeled, cropped, and oriented sub-image; directing...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TENG, Yuan-Ching Spencer WALLACK, Seth SREETHARAN, Pratheev Sabaratnam VENEGAS, Ruben OMONTE, Ariel Ayaviri |
description | A system, an image analyzer and a method for diagnosing a presence of a disease or a condition in an image of a subject, for example, a veterinary patient, are provided including: classifying the image to a body region, and obtaining a classified, labeled, cropped, and oriented sub-image; directing the sub-image to artificial intelligence processor for obtaining an evaluation result, and comparing the evaluation result to a database library of evaluation results and matched written templates or a dataset cluster to obtain at least one cluster result; measuring the distance between the cluster result and the evaluation result to obtain at least one cluster diagnosis; and assembling the cluster diagnosis and the matched written templates to obtain a report to display the report to a radiologist. These system, analyzer and method are achieved in greatly reduced lengths of time and are useful for cost and time savings. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2020415384A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2020415384A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2020415384A13</originalsourceid><addsrcrecordid>eNqNyk0KwjAQhuFuXIh6hwHXQv8Et0UqHkDdljH5EgfSSWmC4u1F8ACu3mfxLotb75wYgWbiOcvXHEg0IwTxUANi5fBOkig6kpE9Er0kP8jE8S4KS9MMKybLEzRGiyDq18XCcUjY_Loqtqf-cjzvMMUBaWIDRR66a13WZVvtm0PbVc1_1wdKZTrp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Efficient artificial intelligence analysis of images with combined predictive modeling</title><source>esp@cenet</source><creator>TENG, Yuan-Ching Spencer ; WALLACK, Seth ; SREETHARAN, Pratheev Sabaratnam ; VENEGAS, Ruben ; OMONTE, Ariel Ayaviri</creator><creatorcontrib>TENG, Yuan-Ching Spencer ; WALLACK, Seth ; SREETHARAN, Pratheev Sabaratnam ; VENEGAS, Ruben ; OMONTE, Ariel Ayaviri</creatorcontrib><description>A system, an image analyzer and a method for diagnosing a presence of a disease or a condition in an image of a subject, for example, a veterinary patient, are provided including: classifying the image to a body region, and obtaining a classified, labeled, cropped, and oriented sub-image; directing the sub-image to artificial intelligence processor for obtaining an evaluation result, and comparing the evaluation result to a database library of evaluation results and matched written templates or a dataset cluster to obtain at least one cluster result; measuring the distance between the cluster result and the evaluation result to obtain at least one cluster diagnosis; and assembling the cluster diagnosis and the matched written templates to obtain a report to display the report to a radiologist. These system, analyzer and method are achieved in greatly reduced lengths of time and are useful for cost and time savings.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DIAGNOSIS ; HANDLING RECORD CARRIERS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SURGERY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220609&DB=EPODOC&CC=AU&NR=2020415384A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220609&DB=EPODOC&CC=AU&NR=2020415384A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TENG, Yuan-Ching Spencer</creatorcontrib><creatorcontrib>WALLACK, Seth</creatorcontrib><creatorcontrib>SREETHARAN, Pratheev Sabaratnam</creatorcontrib><creatorcontrib>VENEGAS, Ruben</creatorcontrib><creatorcontrib>OMONTE, Ariel Ayaviri</creatorcontrib><title>Efficient artificial intelligence analysis of images with combined predictive modeling</title><description>A system, an image analyzer and a method for diagnosing a presence of a disease or a condition in an image of a subject, for example, a veterinary patient, are provided including: classifying the image to a body region, and obtaining a classified, labeled, cropped, and oriented sub-image; directing the sub-image to artificial intelligence processor for obtaining an evaluation result, and comparing the evaluation result to a database library of evaluation results and matched written templates or a dataset cluster to obtain at least one cluster result; measuring the distance between the cluster result and the evaluation result to obtain at least one cluster diagnosis; and assembling the cluster diagnosis and the matched written templates to obtain a report to display the report to a radiologist. These system, analyzer and method are achieved in greatly reduced lengths of time and are useful for cost and time savings.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyk0KwjAQhuFuXIh6hwHXQv8Et0UqHkDdljH5EgfSSWmC4u1F8ACu3mfxLotb75wYgWbiOcvXHEg0IwTxUANi5fBOkig6kpE9Er0kP8jE8S4KS9MMKybLEzRGiyDq18XCcUjY_Loqtqf-cjzvMMUBaWIDRR66a13WZVvtm0PbVc1_1wdKZTrp</recordid><startdate>20220609</startdate><enddate>20220609</enddate><creator>TENG, Yuan-Ching Spencer</creator><creator>WALLACK, Seth</creator><creator>SREETHARAN, Pratheev Sabaratnam</creator><creator>VENEGAS, Ruben</creator><creator>OMONTE, Ariel Ayaviri</creator><scope>EVB</scope></search><sort><creationdate>20220609</creationdate><title>Efficient artificial intelligence analysis of images with combined predictive modeling</title><author>TENG, Yuan-Ching Spencer ; WALLACK, Seth ; SREETHARAN, Pratheev Sabaratnam ; VENEGAS, Ruben ; OMONTE, Ariel Ayaviri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2020415384A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>TENG, Yuan-Ching Spencer</creatorcontrib><creatorcontrib>WALLACK, Seth</creatorcontrib><creatorcontrib>SREETHARAN, Pratheev Sabaratnam</creatorcontrib><creatorcontrib>VENEGAS, Ruben</creatorcontrib><creatorcontrib>OMONTE, Ariel Ayaviri</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TENG, Yuan-Ching Spencer</au><au>WALLACK, Seth</au><au>SREETHARAN, Pratheev Sabaratnam</au><au>VENEGAS, Ruben</au><au>OMONTE, Ariel Ayaviri</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Efficient artificial intelligence analysis of images with combined predictive modeling</title><date>2022-06-09</date><risdate>2022</risdate><abstract>A system, an image analyzer and a method for diagnosing a presence of a disease or a condition in an image of a subject, for example, a veterinary patient, are provided including: classifying the image to a body region, and obtaining a classified, labeled, cropped, and oriented sub-image; directing the sub-image to artificial intelligence processor for obtaining an evaluation result, and comparing the evaluation result to a database library of evaluation results and matched written templates or a dataset cluster to obtain at least one cluster result; measuring the distance between the cluster result and the evaluation result to obtain at least one cluster diagnosis; and assembling the cluster diagnosis and the matched written templates to obtain a report to display the report to a radiologist. These system, analyzer and method are achieved in greatly reduced lengths of time and are useful for cost and time savings.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_AU2020415384A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DIAGNOSIS HANDLING RECORD CARRIERS HUMAN NECESSITIES HYGIENE IDENTIFICATION MEDICAL OR VETERINARY SCIENCE PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SURGERY |
title | Efficient artificial intelligence analysis of images with combined predictive modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TENG,%20Yuan-Ching%20Spencer&rft.date=2022-06-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2020415384A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |