Feed forward neural networks combined with extreme learning machine approach for large weather data

FEED FORWARD NEURAL NETWORKS COMBINED WITH EXTREME LEARNING MACHINE APPROACH FOR LARGE WEATHER DATA Weather forecasting is the application of recent technology and science to find out the state of atmosphere for the purpose of determining the future. The precise weather forecasting is significant in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: P. M., Srinivas, M., Braveen, Arunnehru, J, G., Mamatha, Reddy, P. Chandra Shaker, Karthick, S, K., Sathishkumar, Patil, Mithun Baswaraj, S., Shailesh Shetty, Harisha
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator P. M., Srinivas
M., Braveen
Arunnehru, J
G., Mamatha
Reddy, P. Chandra Shaker
Karthick, S
K., Sathishkumar
Patil, Mithun Baswaraj
S., Shailesh Shetty
Harisha
description FEED FORWARD NEURAL NETWORKS COMBINED WITH EXTREME LEARNING MACHINE APPROACH FOR LARGE WEATHER DATA Weather forecasting is the application of recent technology and science to find out the state of atmosphere for the purpose of determining the future. The precise weather forecasting is significant in today's world because the sectors like agriculture and industries will depend on it. As the weather condition is dynamic and non-linear process, the proposed method addresses the artificial neural network to classify and predict the weather conditions and it is one of the best methods comparing to conventional methods. The neural network models will help to support the various training or learning algorithm. To train the neural network, the back propagation is one of the important algorithms for weather forecasting.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2020103741A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2020103741A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2020103741A43</originalsourceid><addsrcrecordid>eNqNjUkKwkAURLNxIeodPrgWMoHrIAYPoOvw7VQG0hM_Le3xbcEDuHoF9ajaZqoFehqcRJaeLF7COiFEJ8tKypnnbJMQ5zAR3kFgQBosdrYjGVZTqom9F5fyd4c0ywiK4DBBqOfA-2wzsF5x-HGXHdvr_XI7wbsOq2eF9Ng1jzIv8yKvznXR1NV_1get8T9b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Feed forward neural networks combined with extreme learning machine approach for large weather data</title><source>esp@cenet</source><creator>P. M., Srinivas ; M., Braveen ; Arunnehru, J ; G., Mamatha ; Reddy, P. Chandra Shaker ; Karthick, S ; K., Sathishkumar ; Patil, Mithun Baswaraj ; S., Shailesh Shetty ; Harisha</creator><creatorcontrib>P. M., Srinivas ; M., Braveen ; Arunnehru, J ; G., Mamatha ; Reddy, P. Chandra Shaker ; Karthick, S ; K., Sathishkumar ; Patil, Mithun Baswaraj ; S., Shailesh Shetty ; Harisha</creatorcontrib><description>FEED FORWARD NEURAL NETWORKS COMBINED WITH EXTREME LEARNING MACHINE APPROACH FOR LARGE WEATHER DATA Weather forecasting is the application of recent technology and science to find out the state of atmosphere for the purpose of determining the future. The precise weather forecasting is significant in today's world because the sectors like agriculture and industries will depend on it. As the weather condition is dynamic and non-linear process, the proposed method addresses the artificial neural network to classify and predict the weather conditions and it is one of the best methods comparing to conventional methods. The neural network models will help to support the various training or learning algorithm. To train the neural network, the back propagation is one of the important algorithms for weather forecasting.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; METEOROLOGY ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210211&amp;DB=EPODOC&amp;CC=AU&amp;NR=2020103741A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210211&amp;DB=EPODOC&amp;CC=AU&amp;NR=2020103741A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>P. M., Srinivas</creatorcontrib><creatorcontrib>M., Braveen</creatorcontrib><creatorcontrib>Arunnehru, J</creatorcontrib><creatorcontrib>G., Mamatha</creatorcontrib><creatorcontrib>Reddy, P. Chandra Shaker</creatorcontrib><creatorcontrib>Karthick, S</creatorcontrib><creatorcontrib>K., Sathishkumar</creatorcontrib><creatorcontrib>Patil, Mithun Baswaraj</creatorcontrib><creatorcontrib>S., Shailesh Shetty</creatorcontrib><creatorcontrib>Harisha</creatorcontrib><title>Feed forward neural networks combined with extreme learning machine approach for large weather data</title><description>FEED FORWARD NEURAL NETWORKS COMBINED WITH EXTREME LEARNING MACHINE APPROACH FOR LARGE WEATHER DATA Weather forecasting is the application of recent technology and science to find out the state of atmosphere for the purpose of determining the future. The precise weather forecasting is significant in today's world because the sectors like agriculture and industries will depend on it. As the weather condition is dynamic and non-linear process, the proposed method addresses the artificial neural network to classify and predict the weather conditions and it is one of the best methods comparing to conventional methods. The neural network models will help to support the various training or learning algorithm. To train the neural network, the back propagation is one of the important algorithms for weather forecasting.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>METEOROLOGY</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUkKwkAURLNxIeodPrgWMoHrIAYPoOvw7VQG0hM_Le3xbcEDuHoF9ajaZqoFehqcRJaeLF7COiFEJ8tKypnnbJMQ5zAR3kFgQBosdrYjGVZTqom9F5fyd4c0ywiK4DBBqOfA-2wzsF5x-HGXHdvr_XI7wbsOq2eF9Ng1jzIv8yKvznXR1NV_1get8T9b</recordid><startdate>20210211</startdate><enddate>20210211</enddate><creator>P. M., Srinivas</creator><creator>M., Braveen</creator><creator>Arunnehru, J</creator><creator>G., Mamatha</creator><creator>Reddy, P. Chandra Shaker</creator><creator>Karthick, S</creator><creator>K., Sathishkumar</creator><creator>Patil, Mithun Baswaraj</creator><creator>S., Shailesh Shetty</creator><creator>Harisha</creator><scope>EVB</scope></search><sort><creationdate>20210211</creationdate><title>Feed forward neural networks combined with extreme learning machine approach for large weather data</title><author>P. M., Srinivas ; M., Braveen ; Arunnehru, J ; G., Mamatha ; Reddy, P. Chandra Shaker ; Karthick, S ; K., Sathishkumar ; Patil, Mithun Baswaraj ; S., Shailesh Shetty ; Harisha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2020103741A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>METEOROLOGY</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>P. M., Srinivas</creatorcontrib><creatorcontrib>M., Braveen</creatorcontrib><creatorcontrib>Arunnehru, J</creatorcontrib><creatorcontrib>G., Mamatha</creatorcontrib><creatorcontrib>Reddy, P. Chandra Shaker</creatorcontrib><creatorcontrib>Karthick, S</creatorcontrib><creatorcontrib>K., Sathishkumar</creatorcontrib><creatorcontrib>Patil, Mithun Baswaraj</creatorcontrib><creatorcontrib>S., Shailesh Shetty</creatorcontrib><creatorcontrib>Harisha</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>P. M., Srinivas</au><au>M., Braveen</au><au>Arunnehru, J</au><au>G., Mamatha</au><au>Reddy, P. Chandra Shaker</au><au>Karthick, S</au><au>K., Sathishkumar</au><au>Patil, Mithun Baswaraj</au><au>S., Shailesh Shetty</au><au>Harisha</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Feed forward neural networks combined with extreme learning machine approach for large weather data</title><date>2021-02-11</date><risdate>2021</risdate><abstract>FEED FORWARD NEURAL NETWORKS COMBINED WITH EXTREME LEARNING MACHINE APPROACH FOR LARGE WEATHER DATA Weather forecasting is the application of recent technology and science to find out the state of atmosphere for the purpose of determining the future. The precise weather forecasting is significant in today's world because the sectors like agriculture and industries will depend on it. As the weather condition is dynamic and non-linear process, the proposed method addresses the artificial neural network to classify and predict the weather conditions and it is one of the best methods comparing to conventional methods. The neural network models will help to support the various training or learning algorithm. To train the neural network, the back propagation is one of the important algorithms for weather forecasting.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2020103741A4
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
METEOROLOGY
PHYSICS
TESTING
title Feed forward neural networks combined with extreme learning machine approach for large weather data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=P.%20M.,%20Srinivas&rft.date=2021-02-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2020103741A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true