Deep learning techniques based multi-purpose conversational agents for processing natural language queries

Systems and methods for Deep Learning techniques based multi-purpose conversational agents for processing natural language queries. The traditional systems and methods provide for conversational systems for processing natural language queries but do not employ Deep Learning techniques, and thus are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KUMAR, Rohit, BISHT, Vivek, BANSAL, Rachit, SACHAN, Prateek, AGARWAL, Puneet, SHROFF, Gautam, PATIDAR, Mayur, KHURANA, Prerna, CHAUDHARY, Ashish, SINGH, Mahesh Prasad
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KUMAR, Rohit
BISHT, Vivek
BANSAL, Rachit
SACHAN, Prateek
AGARWAL, Puneet
SHROFF, Gautam
PATIDAR, Mayur
KHURANA, Prerna
CHAUDHARY, Ashish
SINGH, Mahesh Prasad
description Systems and methods for Deep Learning techniques based multi-purpose conversational agents for processing natural language queries. The traditional systems and methods provide for conversational systems for processing natural language queries but do not employ Deep Learning techniques, and thus are unable to process large number of intents. Embodiments of the present disclosure provide for Deep Learning techniques based multi-purpose conversational agents for processing the natural language queries by defining and logically integrating a plurality of components comprising of multi-purpose conversational agents, identifying an appropriate agent to process one or more natural language queries by a High Level Intent Identification technique, predicting a probable user intent, classifying the query, and generate a set of responses by querying or updating one or more knowledge graphs (322). «To be published with FIG. 3> cintfc DSM 302 Primary Agents 306 318 (layer) General Chatter Box Agent 301 Multi- 307 level hitent AxlayAet Identify IAD Framework 308 Leave Agent Auxiliary Agents caio03941 cato- Q rmEmergencyo 3 Conmpo Medic ,al Agent Health -+o Dialogue Agent net311 - 2 303 -Insurance32 gTimesheet Agent Agent 310 A3ent Ag316 KGnoaewgnt17graph raph2 Mgnager1 Travel Agent 3 13 __Update Agent 321 Auto-QUE Framework 314 KGQA Agent Suggest KGU-NL 35Kniowledge 35Agent 316 KG, Engage Agent 317 Graph(s) 322 Core
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2019202632A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2019202632A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2019202632A13</originalsourceid><addsrcrecordid>eNqNjM0KwjAQBnvxIOo7LHgutCkIHos_-AB6Lmv9WiNxE7OJz28FH8DTHGaYefHYA4EcOIqVkRL6u9hXhtKVFTd6ZpdsGXIMXkG9lzeicrJe2BGPkKQ0-Egh-h6q34dwynGyjmXMU0LTLlrospgN7BSrHxfF-ng4704lgu-ggXsIUtdeTFVvTWU2jWnr5r_qAzSeQwo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning techniques based multi-purpose conversational agents for processing natural language queries</title><source>esp@cenet</source><creator>KUMAR, Rohit ; BISHT, Vivek ; BANSAL, Rachit ; SACHAN, Prateek ; AGARWAL, Puneet ; SHROFF, Gautam ; PATIDAR, Mayur ; KHURANA, Prerna ; CHAUDHARY, Ashish ; SINGH, Mahesh Prasad</creator><creatorcontrib>KUMAR, Rohit ; BISHT, Vivek ; BANSAL, Rachit ; SACHAN, Prateek ; AGARWAL, Puneet ; SHROFF, Gautam ; PATIDAR, Mayur ; KHURANA, Prerna ; CHAUDHARY, Ashish ; SINGH, Mahesh Prasad</creatorcontrib><description>Systems and methods for Deep Learning techniques based multi-purpose conversational agents for processing natural language queries. The traditional systems and methods provide for conversational systems for processing natural language queries but do not employ Deep Learning techniques, and thus are unable to process large number of intents. Embodiments of the present disclosure provide for Deep Learning techniques based multi-purpose conversational agents for processing the natural language queries by defining and logically integrating a plurality of components comprising of multi-purpose conversational agents, identifying an appropriate agent to process one or more natural language queries by a High Level Intent Identification technique, predicting a probable user intent, classifying the query, and generate a set of responses by querying or updating one or more knowledge graphs (322). «To be published with FIG. 3&gt; cintfc DSM 302 Primary Agents 306 318 (layer) General Chatter Box Agent 301 Multi- 307 level hitent AxlayAet Identify IAD Framework 308 Leave Agent Auxiliary Agents caio03941 cato- Q rmEmergencyo 3 Conmpo Medic ,al Agent Health -+o Dialogue Agent net311 - 2 303 -Insurance32 gTimesheet Agent Agent 310 A3ent Ag316 KGnoaewgnt17graph raph2 Mgnager1 Travel Agent 3 13 __Update Agent 321 Auto-QUE Framework 314 KGQA Agent Suggest KGU-NL 35Kniowledge 35Agent 316 KG, Engage Agent 317 Graph(s) 322 Core</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191031&amp;DB=EPODOC&amp;CC=AU&amp;NR=2019202632A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191031&amp;DB=EPODOC&amp;CC=AU&amp;NR=2019202632A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KUMAR, Rohit</creatorcontrib><creatorcontrib>BISHT, Vivek</creatorcontrib><creatorcontrib>BANSAL, Rachit</creatorcontrib><creatorcontrib>SACHAN, Prateek</creatorcontrib><creatorcontrib>AGARWAL, Puneet</creatorcontrib><creatorcontrib>SHROFF, Gautam</creatorcontrib><creatorcontrib>PATIDAR, Mayur</creatorcontrib><creatorcontrib>KHURANA, Prerna</creatorcontrib><creatorcontrib>CHAUDHARY, Ashish</creatorcontrib><creatorcontrib>SINGH, Mahesh Prasad</creatorcontrib><title>Deep learning techniques based multi-purpose conversational agents for processing natural language queries</title><description>Systems and methods for Deep Learning techniques based multi-purpose conversational agents for processing natural language queries. The traditional systems and methods provide for conversational systems for processing natural language queries but do not employ Deep Learning techniques, and thus are unable to process large number of intents. Embodiments of the present disclosure provide for Deep Learning techniques based multi-purpose conversational agents for processing the natural language queries by defining and logically integrating a plurality of components comprising of multi-purpose conversational agents, identifying an appropriate agent to process one or more natural language queries by a High Level Intent Identification technique, predicting a probable user intent, classifying the query, and generate a set of responses by querying or updating one or more knowledge graphs (322). «To be published with FIG. 3&gt; cintfc DSM 302 Primary Agents 306 318 (layer) General Chatter Box Agent 301 Multi- 307 level hitent AxlayAet Identify IAD Framework 308 Leave Agent Auxiliary Agents caio03941 cato- Q rmEmergencyo 3 Conmpo Medic ,al Agent Health -+o Dialogue Agent net311 - 2 303 -Insurance32 gTimesheet Agent Agent 310 A3ent Ag316 KGnoaewgnt17graph raph2 Mgnager1 Travel Agent 3 13 __Update Agent 321 Auto-QUE Framework 314 KGQA Agent Suggest KGU-NL 35Kniowledge 35Agent 316 KG, Engage Agent 317 Graph(s) 322 Core</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjM0KwjAQBnvxIOo7LHgutCkIHos_-AB6Lmv9WiNxE7OJz28FH8DTHGaYefHYA4EcOIqVkRL6u9hXhtKVFTd6ZpdsGXIMXkG9lzeicrJe2BGPkKQ0-Egh-h6q34dwynGyjmXMU0LTLlrospgN7BSrHxfF-ng4704lgu-ggXsIUtdeTFVvTWU2jWnr5r_qAzSeQwo</recordid><startdate>20191031</startdate><enddate>20191031</enddate><creator>KUMAR, Rohit</creator><creator>BISHT, Vivek</creator><creator>BANSAL, Rachit</creator><creator>SACHAN, Prateek</creator><creator>AGARWAL, Puneet</creator><creator>SHROFF, Gautam</creator><creator>PATIDAR, Mayur</creator><creator>KHURANA, Prerna</creator><creator>CHAUDHARY, Ashish</creator><creator>SINGH, Mahesh Prasad</creator><scope>EVB</scope></search><sort><creationdate>20191031</creationdate><title>Deep learning techniques based multi-purpose conversational agents for processing natural language queries</title><author>KUMAR, Rohit ; BISHT, Vivek ; BANSAL, Rachit ; SACHAN, Prateek ; AGARWAL, Puneet ; SHROFF, Gautam ; PATIDAR, Mayur ; KHURANA, Prerna ; CHAUDHARY, Ashish ; SINGH, Mahesh Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2019202632A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KUMAR, Rohit</creatorcontrib><creatorcontrib>BISHT, Vivek</creatorcontrib><creatorcontrib>BANSAL, Rachit</creatorcontrib><creatorcontrib>SACHAN, Prateek</creatorcontrib><creatorcontrib>AGARWAL, Puneet</creatorcontrib><creatorcontrib>SHROFF, Gautam</creatorcontrib><creatorcontrib>PATIDAR, Mayur</creatorcontrib><creatorcontrib>KHURANA, Prerna</creatorcontrib><creatorcontrib>CHAUDHARY, Ashish</creatorcontrib><creatorcontrib>SINGH, Mahesh Prasad</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KUMAR, Rohit</au><au>BISHT, Vivek</au><au>BANSAL, Rachit</au><au>SACHAN, Prateek</au><au>AGARWAL, Puneet</au><au>SHROFF, Gautam</au><au>PATIDAR, Mayur</au><au>KHURANA, Prerna</au><au>CHAUDHARY, Ashish</au><au>SINGH, Mahesh Prasad</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning techniques based multi-purpose conversational agents for processing natural language queries</title><date>2019-10-31</date><risdate>2019</risdate><abstract>Systems and methods for Deep Learning techniques based multi-purpose conversational agents for processing natural language queries. The traditional systems and methods provide for conversational systems for processing natural language queries but do not employ Deep Learning techniques, and thus are unable to process large number of intents. Embodiments of the present disclosure provide for Deep Learning techniques based multi-purpose conversational agents for processing the natural language queries by defining and logically integrating a plurality of components comprising of multi-purpose conversational agents, identifying an appropriate agent to process one or more natural language queries by a High Level Intent Identification technique, predicting a probable user intent, classifying the query, and generate a set of responses by querying or updating one or more knowledge graphs (322). «To be published with FIG. 3&gt; cintfc DSM 302 Primary Agents 306 318 (layer) General Chatter Box Agent 301 Multi- 307 level hitent AxlayAet Identify IAD Framework 308 Leave Agent Auxiliary Agents caio03941 cato- Q rmEmergencyo 3 Conmpo Medic ,al Agent Health -+o Dialogue Agent net311 - 2 303 -Insurance32 gTimesheet Agent Agent 310 A3ent Ag316 KGnoaewgnt17graph raph2 Mgnager1 Travel Agent 3 13 __Update Agent 321 Auto-QUE Framework 314 KGQA Agent Suggest KGU-NL 35Kniowledge 35Agent 316 KG, Engage Agent 317 Graph(s) 322 Core</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2019202632A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Deep learning techniques based multi-purpose conversational agents for processing natural language queries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KUMAR,%20Rohit&rft.date=2019-10-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2019202632A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true