CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES

CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES The most challenging problems in karyotyping are segmentation and classification of overlapping chromosomes in metaphase spread images. Often chromosomes are bent in different directions with varying degrees of bend. Ted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: VIG, Lovekesh, SRIRAMAN, Anand, KARANDE, Shirish Subhash, HEBBALAGUPPE, Ramya Sugnana Murthy, SHARMA, Monika
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator VIG, Lovekesh
SRIRAMAN, Anand
KARANDE, Shirish Subhash
HEBBALAGUPPE, Ramya Sugnana Murthy
SHARMA, Monika
description CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES The most challenging problems in karyotyping are segmentation and classification of overlapping chromosomes in metaphase spread images. Often chromosomes are bent in different directions with varying degrees of bend. Tediousness and time consuming nature of the effort for ground truth creation makes it difficult to scale the ground truth for training phase. The present disclosure provides an end to-end solution that reduces the cognitive burden of segmenting and karyotyping chromosomes. Dependency on experts is reduced by employing crowdsourcing while simultaneously addressing the issues associated with crowdsourcing. Identified segments through crowdsourcing are pre-processed to improve classification achieved by employing deep convolutional network (CNN). $ 4 4, #9 OP*
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2018201476BB2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2018201476BB2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2018201476BB23</originalsourceid><addsrcrecordid>eNrjZPB3DvIPdwn2Dw1y9vRzV3D0c1FwcXUNUPBxdQzyA4k4OQa7uigEu7r7uvqFwJR4OwZF-odEBoD4_m4Kzh5B_r7-wf6-rsE8DKxpiTnFqbxQmptBxc01xNlDN7UgPz61uCAxOTUvtSTeMdTIwNACiE3MzZycjIyJVAYAaj0wQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES</title><source>esp@cenet</source><creator>VIG, Lovekesh ; SRIRAMAN, Anand ; KARANDE, Shirish Subhash ; HEBBALAGUPPE, Ramya Sugnana Murthy ; SHARMA, Monika</creator><creatorcontrib>VIG, Lovekesh ; SRIRAMAN, Anand ; KARANDE, Shirish Subhash ; HEBBALAGUPPE, Ramya Sugnana Murthy ; SHARMA, Monika</creatorcontrib><description>CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES The most challenging problems in karyotyping are segmentation and classification of overlapping chromosomes in metaphase spread images. Often chromosomes are bent in different directions with varying degrees of bend. Tediousness and time consuming nature of the effort for ground truth creation makes it difficult to scale the ground truth for training phase. The present disclosure provides an end to-end solution that reduces the cognitive burden of segmenting and karyotyping chromosomes. Dependency on experts is reduced by employing crowdsourcing while simultaneously addressing the issues associated with crowdsourcing. Identified segments through crowdsourcing are pre-processed to improve classification achieved by employing deep convolutional network (CNN). $ 4 4, #9 OP*</description><language>eng</language><subject>BEER ; BIOCHEMISTRY ; CALCULATING ; CHEMISTRY ; COMPOSITIONS OR TEST PAPERS THEREFOR ; COMPUTING ; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ; COUNTING ; ENZYMOLOGY ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS ; METALLURGY ; MICROBIOLOGY ; MUTATION OR GENETIC ENGINEERING ; PHYSICS ; PROCESSES OF PREPARING SUCH COMPOSITIONS ; SPIRITS ; TESTING ; VINEGAR ; WINE</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200130&amp;DB=EPODOC&amp;CC=AU&amp;NR=2018201476B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200130&amp;DB=EPODOC&amp;CC=AU&amp;NR=2018201476B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>VIG, Lovekesh</creatorcontrib><creatorcontrib>SRIRAMAN, Anand</creatorcontrib><creatorcontrib>KARANDE, Shirish Subhash</creatorcontrib><creatorcontrib>HEBBALAGUPPE, Ramya Sugnana Murthy</creatorcontrib><creatorcontrib>SHARMA, Monika</creatorcontrib><title>CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES</title><description>CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES The most challenging problems in karyotyping are segmentation and classification of overlapping chromosomes in metaphase spread images. Often chromosomes are bent in different directions with varying degrees of bend. Tediousness and time consuming nature of the effort for ground truth creation makes it difficult to scale the ground truth for training phase. The present disclosure provides an end to-end solution that reduces the cognitive burden of segmenting and karyotyping chromosomes. Dependency on experts is reduced by employing crowdsourcing while simultaneously addressing the issues associated with crowdsourcing. Identified segments through crowdsourcing are pre-processed to improve classification achieved by employing deep convolutional network (CNN). $ 4 4, #9 OP*</description><subject>BEER</subject><subject>BIOCHEMISTRY</subject><subject>CALCULATING</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS OR TEST PAPERS THEREFOR</subject><subject>COMPUTING</subject><subject>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</subject><subject>COUNTING</subject><subject>ENZYMOLOGY</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</subject><subject>METALLURGY</subject><subject>MICROBIOLOGY</subject><subject>MUTATION OR GENETIC ENGINEERING</subject><subject>PHYSICS</subject><subject>PROCESSES OF PREPARING SUCH COMPOSITIONS</subject><subject>SPIRITS</subject><subject>TESTING</subject><subject>VINEGAR</subject><subject>WINE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB3DvIPdwn2Dw1y9vRzV3D0c1FwcXUNUPBxdQzyA4k4OQa7uigEu7r7uvqFwJR4OwZF-odEBoD4_m4Kzh5B_r7-wf6-rsE8DKxpiTnFqbxQmptBxc01xNlDN7UgPz61uCAxOTUvtSTeMdTIwNACiE3MzZycjIyJVAYAaj0wQA</recordid><startdate>20200130</startdate><enddate>20200130</enddate><creator>VIG, Lovekesh</creator><creator>SRIRAMAN, Anand</creator><creator>KARANDE, Shirish Subhash</creator><creator>HEBBALAGUPPE, Ramya Sugnana Murthy</creator><creator>SHARMA, Monika</creator><scope>EVB</scope></search><sort><creationdate>20200130</creationdate><title>CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES</title><author>VIG, Lovekesh ; SRIRAMAN, Anand ; KARANDE, Shirish Subhash ; HEBBALAGUPPE, Ramya Sugnana Murthy ; SHARMA, Monika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2018201476BB23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BEER</topic><topic>BIOCHEMISTRY</topic><topic>CALCULATING</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS OR TEST PAPERS THEREFOR</topic><topic>COMPUTING</topic><topic>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</topic><topic>COUNTING</topic><topic>ENZYMOLOGY</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</topic><topic>METALLURGY</topic><topic>MICROBIOLOGY</topic><topic>MUTATION OR GENETIC ENGINEERING</topic><topic>PHYSICS</topic><topic>PROCESSES OF PREPARING SUCH COMPOSITIONS</topic><topic>SPIRITS</topic><topic>TESTING</topic><topic>VINEGAR</topic><topic>WINE</topic><toplevel>online_resources</toplevel><creatorcontrib>VIG, Lovekesh</creatorcontrib><creatorcontrib>SRIRAMAN, Anand</creatorcontrib><creatorcontrib>KARANDE, Shirish Subhash</creatorcontrib><creatorcontrib>HEBBALAGUPPE, Ramya Sugnana Murthy</creatorcontrib><creatorcontrib>SHARMA, Monika</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>VIG, Lovekesh</au><au>SRIRAMAN, Anand</au><au>KARANDE, Shirish Subhash</au><au>HEBBALAGUPPE, Ramya Sugnana Murthy</au><au>SHARMA, Monika</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES</title><date>2020-01-30</date><risdate>2020</risdate><abstract>CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES The most challenging problems in karyotyping are segmentation and classification of overlapping chromosomes in metaphase spread images. Often chromosomes are bent in different directions with varying degrees of bend. Tediousness and time consuming nature of the effort for ground truth creation makes it difficult to scale the ground truth for training phase. The present disclosure provides an end to-end solution that reduces the cognitive burden of segmenting and karyotyping chromosomes. Dependency on experts is reduced by employing crowdsourcing while simultaneously addressing the issues associated with crowdsourcing. Identified segments through crowdsourcing are pre-processed to improve classification achieved by employing deep convolutional network (CNN). $ 4 4, #9 OP*</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2018201476BB2
source esp@cenet
subjects BEER
BIOCHEMISTRY
CALCULATING
CHEMISTRY
COMPOSITIONS OR TEST PAPERS THEREFOR
COMPUTING
CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES
COUNTING
ENZYMOLOGY
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS
METALLURGY
MICROBIOLOGY
MUTATION OR GENETIC ENGINEERING
PHYSICS
PROCESSES OF PREPARING SUCH COMPOSITIONS
SPIRITS
TESTING
VINEGAR
WINE
title CROWDSOURCING AND DEEP LEARNING BASED SEGMENTING AND KARYOTYPING OF CHROMOSOMES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=VIG,%20Lovekesh&rft.date=2020-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2018201476BB2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true