System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions

The present disclosure relates to systems and methods for developing radiotherapy treatment plans though the use of machine learning approaches and neural network components. A neural network is trained using one or more three-dimensional medical images, one or more three-dimensional anatomy maps, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hibbard, Lyndon S
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hibbard, Lyndon S
description The present disclosure relates to systems and methods for developing radiotherapy treatment plans though the use of machine learning approaches and neural network components. A neural network is trained using one or more three-dimensional medical images, one or more three-dimensional anatomy maps, and one or more dose distributions to predict a fluence map or a dose map. During training the neural network receives a predicted dose distribution determined by the neural network that is compared to an expected dose distribution. Iteratively the comparison is performed until a predetermined threshold is achieved. The trained neural network is then utilized to provide a three-dimensional dose distribution.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2017324627BB2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2017324627BB2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2017324627BB23</originalsourceid><addsrcrecordid>eNqNyqEOwjAQANAZBAH-4QSWBDrCNCMQPKCXY72xJm2vuTvE_h6DwaGeefOq3CY1SoDZQyIb2cPAApFQcsgvSOwpKvAAgj6wjSRYJjAhtETZoETMCsZQhHzo7fd5VgIf1CQ83xY467KaDRiVVl8X1fpyvp-uGyrckRbsKZN1x4fb7pra7Q-uaVtX_9k-XTVFtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions</title><source>esp@cenet</source><creator>Hibbard, Lyndon S</creator><creatorcontrib>Hibbard, Lyndon S</creatorcontrib><description>The present disclosure relates to systems and methods for developing radiotherapy treatment plans though the use of machine learning approaches and neural network components. A neural network is trained using one or more three-dimensional medical images, one or more three-dimensional anatomy maps, and one or more dose distributions to predict a fluence map or a dose map. During training the neural network receives a predicted dose distribution determined by the neural network that is compared to an expected dose distribution. Iteratively the comparison is performed until a predetermined threshold is achieved. The trained neural network is then utilized to provide a three-dimensional dose distribution.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTROTHERAPY ; HUMAN NECESSITIES ; HYGIENE ; MAGNETOTHERAPY ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; RADIATION THERAPY ; ULTRASOUND THERAPY</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191205&amp;DB=EPODOC&amp;CC=AU&amp;NR=2017324627B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191205&amp;DB=EPODOC&amp;CC=AU&amp;NR=2017324627B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hibbard, Lyndon S</creatorcontrib><title>System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions</title><description>The present disclosure relates to systems and methods for developing radiotherapy treatment plans though the use of machine learning approaches and neural network components. A neural network is trained using one or more three-dimensional medical images, one or more three-dimensional anatomy maps, and one or more dose distributions to predict a fluence map or a dose map. During training the neural network receives a predicted dose distribution determined by the neural network that is compared to an expected dose distribution. Iteratively the comparison is performed until a predetermined threshold is achieved. The trained neural network is then utilized to provide a three-dimensional dose distribution.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTROTHERAPY</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>MAGNETOTHERAPY</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>RADIATION THERAPY</subject><subject>ULTRASOUND THERAPY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyqEOwjAQANAZBAH-4QSWBDrCNCMQPKCXY72xJm2vuTvE_h6DwaGeefOq3CY1SoDZQyIb2cPAApFQcsgvSOwpKvAAgj6wjSRYJjAhtETZoETMCsZQhHzo7fd5VgIf1CQ83xY467KaDRiVVl8X1fpyvp-uGyrckRbsKZN1x4fb7pra7Q-uaVtX_9k-XTVFtA</recordid><startdate>20191205</startdate><enddate>20191205</enddate><creator>Hibbard, Lyndon S</creator><scope>EVB</scope></search><sort><creationdate>20191205</creationdate><title>System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions</title><author>Hibbard, Lyndon S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2017324627BB23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTROTHERAPY</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>MAGNETOTHERAPY</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>RADIATION THERAPY</topic><topic>ULTRASOUND THERAPY</topic><toplevel>online_resources</toplevel><creatorcontrib>Hibbard, Lyndon S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hibbard, Lyndon S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions</title><date>2019-12-05</date><risdate>2019</risdate><abstract>The present disclosure relates to systems and methods for developing radiotherapy treatment plans though the use of machine learning approaches and neural network components. A neural network is trained using one or more three-dimensional medical images, one or more three-dimensional anatomy maps, and one or more dose distributions to predict a fluence map or a dose map. During training the neural network receives a predicted dose distribution determined by the neural network that is compared to an expected dose distribution. Iteratively the comparison is performed until a predetermined threshold is achieved. The trained neural network is then utilized to provide a three-dimensional dose distribution.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2017324627BB2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTROTHERAPY
HUMAN NECESSITIES
HYGIENE
MAGNETOTHERAPY
MEDICAL OR VETERINARY SCIENCE
PHYSICS
RADIATION THERAPY
ULTRASOUND THERAPY
title System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hibbard,%20Lyndon%20S&rft.date=2019-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2017324627BB2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true