Structure learning in convolutional neural networks

The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Malisiewicz, Tomasz J, Detone, Daniel, Rajendran, Srivignesh, Lee, Douglas Bertram, Rabinovich, Andrew, Badrinarayanan, Vijay
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Malisiewicz, Tomasz J
Detone, Daniel
Rajendran, Srivignesh
Lee, Douglas Bertram
Rabinovich, Andrew
Badrinarayanan, Vijay
description The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way to the fully connected layers. Rather than simply making the architecture deeper, additional computation and capacitance is only added where it is required.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2017230184A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2017230184A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2017230184A13</originalsourceid><addsrcrecordid>eNrjZDAOLikqTS4pLUpVyElNLMrLzEtXyMxTSM7PK8vPKS3JzM9LzFHISy0tAlMl5flF2cU8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxORWoNN4x1MjA0NzI2MDQwsTR0Jg4VQANCC4L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Structure learning in convolutional neural networks</title><source>esp@cenet</source><creator>Malisiewicz, Tomasz J ; Detone, Daniel ; Rajendran, Srivignesh ; Lee, Douglas Bertram ; Rabinovich, Andrew ; Badrinarayanan, Vijay</creator><creatorcontrib>Malisiewicz, Tomasz J ; Detone, Daniel ; Rajendran, Srivignesh ; Lee, Douglas Bertram ; Rabinovich, Andrew ; Badrinarayanan, Vijay</creatorcontrib><description>The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way to the fully connected layers. Rather than simply making the architecture deeper, additional computation and capacitance is only added where it is required.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180906&amp;DB=EPODOC&amp;CC=AU&amp;NR=2017230184A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180906&amp;DB=EPODOC&amp;CC=AU&amp;NR=2017230184A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Malisiewicz, Tomasz J</creatorcontrib><creatorcontrib>Detone, Daniel</creatorcontrib><creatorcontrib>Rajendran, Srivignesh</creatorcontrib><creatorcontrib>Lee, Douglas Bertram</creatorcontrib><creatorcontrib>Rabinovich, Andrew</creatorcontrib><creatorcontrib>Badrinarayanan, Vijay</creatorcontrib><title>Structure learning in convolutional neural networks</title><description>The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way to the fully connected layers. Rather than simply making the architecture deeper, additional computation and capacitance is only added where it is required.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAOLikqTS4pLUpVyElNLMrLzEtXyMxTSM7PK8vPKS3JzM9LzFHISy0tAlMl5flF2cU8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxORWoNN4x1MjA0NzI2MDQwsTR0Jg4VQANCC4L</recordid><startdate>20180906</startdate><enddate>20180906</enddate><creator>Malisiewicz, Tomasz J</creator><creator>Detone, Daniel</creator><creator>Rajendran, Srivignesh</creator><creator>Lee, Douglas Bertram</creator><creator>Rabinovich, Andrew</creator><creator>Badrinarayanan, Vijay</creator><scope>EVB</scope></search><sort><creationdate>20180906</creationdate><title>Structure learning in convolutional neural networks</title><author>Malisiewicz, Tomasz J ; Detone, Daniel ; Rajendran, Srivignesh ; Lee, Douglas Bertram ; Rabinovich, Andrew ; Badrinarayanan, Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2017230184A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Malisiewicz, Tomasz J</creatorcontrib><creatorcontrib>Detone, Daniel</creatorcontrib><creatorcontrib>Rajendran, Srivignesh</creatorcontrib><creatorcontrib>Lee, Douglas Bertram</creatorcontrib><creatorcontrib>Rabinovich, Andrew</creatorcontrib><creatorcontrib>Badrinarayanan, Vijay</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malisiewicz, Tomasz J</au><au>Detone, Daniel</au><au>Rajendran, Srivignesh</au><au>Lee, Douglas Bertram</au><au>Rabinovich, Andrew</au><au>Badrinarayanan, Vijay</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Structure learning in convolutional neural networks</title><date>2018-09-06</date><risdate>2018</risdate><abstract>The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way to the fully connected layers. Rather than simply making the architecture deeper, additional computation and capacitance is only added where it is required.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2017230184A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Structure learning in convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Malisiewicz,%20Tomasz%20J&rft.date=2018-09-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2017230184A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true