Structure learning in convolutional neural networks
The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Malisiewicz, Tomasz J Detone, Daniel Rajendran, Srivignesh Lee, Douglas Bertram Rabinovich, Andrew Badrinarayanan, Vijay |
description | The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way to the fully connected layers. Rather than simply making the architecture deeper, additional computation and capacitance is only added where it is required. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2017230184A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2017230184A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2017230184A13</originalsourceid><addsrcrecordid>eNrjZDAOLikqTS4pLUpVyElNLMrLzEtXyMxTSM7PK8vPKS3JzM9LzFHISy0tAlMl5flF2cU8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxORWoNN4x1MjA0NzI2MDQwsTR0Jg4VQANCC4L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Structure learning in convolutional neural networks</title><source>esp@cenet</source><creator>Malisiewicz, Tomasz J ; Detone, Daniel ; Rajendran, Srivignesh ; Lee, Douglas Bertram ; Rabinovich, Andrew ; Badrinarayanan, Vijay</creator><creatorcontrib>Malisiewicz, Tomasz J ; Detone, Daniel ; Rajendran, Srivignesh ; Lee, Douglas Bertram ; Rabinovich, Andrew ; Badrinarayanan, Vijay</creatorcontrib><description>The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way to the fully connected layers. Rather than simply making the architecture deeper, additional computation and capacitance is only added where it is required.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180906&DB=EPODOC&CC=AU&NR=2017230184A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180906&DB=EPODOC&CC=AU&NR=2017230184A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Malisiewicz, Tomasz J</creatorcontrib><creatorcontrib>Detone, Daniel</creatorcontrib><creatorcontrib>Rajendran, Srivignesh</creatorcontrib><creatorcontrib>Lee, Douglas Bertram</creatorcontrib><creatorcontrib>Rabinovich, Andrew</creatorcontrib><creatorcontrib>Badrinarayanan, Vijay</creatorcontrib><title>Structure learning in convolutional neural networks</title><description>The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way to the fully connected layers. Rather than simply making the architecture deeper, additional computation and capacitance is only added where it is required.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAOLikqTS4pLUpVyElNLMrLzEtXyMxTSM7PK8vPKS3JzM9LzFHISy0tAlMl5flF2cU8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxORWoNN4x1MjA0NzI2MDQwsTR0Jg4VQANCC4L</recordid><startdate>20180906</startdate><enddate>20180906</enddate><creator>Malisiewicz, Tomasz J</creator><creator>Detone, Daniel</creator><creator>Rajendran, Srivignesh</creator><creator>Lee, Douglas Bertram</creator><creator>Rabinovich, Andrew</creator><creator>Badrinarayanan, Vijay</creator><scope>EVB</scope></search><sort><creationdate>20180906</creationdate><title>Structure learning in convolutional neural networks</title><author>Malisiewicz, Tomasz J ; Detone, Daniel ; Rajendran, Srivignesh ; Lee, Douglas Bertram ; Rabinovich, Andrew ; Badrinarayanan, Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2017230184A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Malisiewicz, Tomasz J</creatorcontrib><creatorcontrib>Detone, Daniel</creatorcontrib><creatorcontrib>Rajendran, Srivignesh</creatorcontrib><creatorcontrib>Lee, Douglas Bertram</creatorcontrib><creatorcontrib>Rabinovich, Andrew</creatorcontrib><creatorcontrib>Badrinarayanan, Vijay</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malisiewicz, Tomasz J</au><au>Detone, Daniel</au><au>Rajendran, Srivignesh</au><au>Lee, Douglas Bertram</au><au>Rabinovich, Andrew</au><au>Badrinarayanan, Vijay</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Structure learning in convolutional neural networks</title><date>2018-09-06</date><risdate>2018</risdate><abstract>The present disclosure provides an improved approach to implement structure learning of neural networks by exploiting correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information gain from the bottom convolutional layers all the way to the fully connected layers. Rather than simply making the architecture deeper, additional computation and capacitance is only added where it is required.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_AU2017230184A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Structure learning in convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Malisiewicz,%20Tomasz%20J&rft.date=2018-09-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2017230184A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |