An imaging system and method for classifying a concept type in video

AN IMAGING SYSTEM AND METHOD FOR CLASSIFYING A CONCEPT TYPE IN A method and associated imaging system for classifying at least one concept type in a video segment is disclosed. The method associates (420) an object concept type in the video segment with a spatio-temporal segment of the video segment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Drake, Barry James, Mehrseresht, Nagita
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Drake, Barry James
Mehrseresht, Nagita
description AN IMAGING SYSTEM AND METHOD FOR CLASSIFYING A CONCEPT TYPE IN A method and associated imaging system for classifying at least one concept type in a video segment is disclosed. The method associates (420) an object concept type in the video segment with a spatio-temporal segment of the video segment. The method then associates (450) a plurality of action concept types with the spatio-temporal segment, where each action concept type of the plurality of action concept types is associated with a subset of the spatio-temporal segment associated with the object concept type. The method then classifies the action concept types and the object concept types associated with the video segment using a conditional Markov random field (CRF) model where the CRF model is structured with the plurality of action concept types being independent and indirectly linked via a global concept type assigned to the video segment, and the object concept type is linked to the global concept type. 1R27414 1 (P144qn11 405 Tracking Fo ah410 4 Ta -For each track determine the spatio temporal segment (S, ) associated with that track 406 segment Associate a random variable (0) (S) with each spatio-temporal segment (s,) representing a type class of the object in the segment + 430 For each spatio-temporal segment S, ( ) calculate an object feature representation (xo,) Temporally segment the spatio temporal segment (s,) into a plurality of sub-segments (S,) 450 Associate a random variable (A,,) representing a type class of action with each sub-segment (SJe) For each sub-segment (Sit) calculate an action feature representation (xA,) Associate a global random variable (E) with the video segment (S) Calculate a global scene 1407 *classification feature representation (S) for (XE) Model Build a probabilistic graphical model 490 parameters using w and xE I 0i I XAi,, for all / }W and t Determine object type(s) , action type(s)49 Semantic and the scene type classification for theF tags 7-d segment ( S) by finding the MAP solution ( End )Fig. 4
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2015271975A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2015271975A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2015271975A13</originalsourceid><addsrcrecordid>eNqNyjsKAjEQANA0FqLeYcBaMCvLYhn84AG0XoZksgY2M8EJQm4vggewes1bmrNjSBmnxBNo00oZkANkqk8JEOUFfkbVFNt3IHhhT6VCbYUgMbxTIFmbRcRZafNzZbbXy_1021GRkbSgJ6Y6uke3t3032OPQO3v4b30APeozLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>An imaging system and method for classifying a concept type in video</title><source>esp@cenet</source><creator>Drake, Barry James ; Mehrseresht, Nagita</creator><creatorcontrib>Drake, Barry James ; Mehrseresht, Nagita</creatorcontrib><description>AN IMAGING SYSTEM AND METHOD FOR CLASSIFYING A CONCEPT TYPE IN A method and associated imaging system for classifying at least one concept type in a video segment is disclosed. The method associates (420) an object concept type in the video segment with a spatio-temporal segment of the video segment. The method then associates (450) a plurality of action concept types with the spatio-temporal segment, where each action concept type of the plurality of action concept types is associated with a subset of the spatio-temporal segment associated with the object concept type. The method then classifies the action concept types and the object concept types associated with the video segment using a conditional Markov random field (CRF) model where the CRF model is structured with the plurality of action concept types being independent and indirectly linked via a global concept type assigned to the video segment, and the object concept type is linked to the global concept type. 1R27414 1 (P144qn11 405 Tracking Fo ah410 4 Ta -For each track determine the spatio temporal segment (S, ) associated with that track 406 segment Associate a random variable (0) (S) with each spatio-temporal segment (s,) representing a type class of the object in the segment + 430 For each spatio-temporal segment S, ( ) calculate an object feature representation (xo,) Temporally segment the spatio temporal segment (s,) into a plurality of sub-segments (S,) 450 Associate a random variable (A,,) representing a type class of action with each sub-segment (SJe) For each sub-segment (Sit) calculate an action feature representation (xA,) Associate a global random variable (E) with the video segment (S) Calculate a global scene 1407 *classification feature representation (S) for (XE) Model Build a probabilistic graphical model 490 parameters using w and xE I 0i I XAi,, for all / }W and t Determine object type(s) , action type(s)49 Semantic and the scene type classification for theF tags 7-d segment ( S) by finding the MAP solution ( End )Fig. 4</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170706&amp;DB=EPODOC&amp;CC=AU&amp;NR=2015271975A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170706&amp;DB=EPODOC&amp;CC=AU&amp;NR=2015271975A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Drake, Barry James</creatorcontrib><creatorcontrib>Mehrseresht, Nagita</creatorcontrib><title>An imaging system and method for classifying a concept type in video</title><description>AN IMAGING SYSTEM AND METHOD FOR CLASSIFYING A CONCEPT TYPE IN A method and associated imaging system for classifying at least one concept type in a video segment is disclosed. The method associates (420) an object concept type in the video segment with a spatio-temporal segment of the video segment. The method then associates (450) a plurality of action concept types with the spatio-temporal segment, where each action concept type of the plurality of action concept types is associated with a subset of the spatio-temporal segment associated with the object concept type. The method then classifies the action concept types and the object concept types associated with the video segment using a conditional Markov random field (CRF) model where the CRF model is structured with the plurality of action concept types being independent and indirectly linked via a global concept type assigned to the video segment, and the object concept type is linked to the global concept type. 1R27414 1 (P144qn11 405 Tracking Fo ah410 4 Ta -For each track determine the spatio temporal segment (S, ) associated with that track 406 segment Associate a random variable (0) (S) with each spatio-temporal segment (s,) representing a type class of the object in the segment + 430 For each spatio-temporal segment S, ( ) calculate an object feature representation (xo,) Temporally segment the spatio temporal segment (s,) into a plurality of sub-segments (S,) 450 Associate a random variable (A,,) representing a type class of action with each sub-segment (SJe) For each sub-segment (Sit) calculate an action feature representation (xA,) Associate a global random variable (E) with the video segment (S) Calculate a global scene 1407 *classification feature representation (S) for (XE) Model Build a probabilistic graphical model 490 parameters using w and xE I 0i I XAi,, for all / }W and t Determine object type(s) , action type(s)49 Semantic and the scene type classification for theF tags 7-d segment ( S) by finding the MAP solution ( End )Fig. 4</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjsKAjEQANA0FqLeYcBaMCvLYhn84AG0XoZksgY2M8EJQm4vggewes1bmrNjSBmnxBNo00oZkANkqk8JEOUFfkbVFNt3IHhhT6VCbYUgMbxTIFmbRcRZafNzZbbXy_1021GRkbSgJ6Y6uke3t3032OPQO3v4b30APeozLQ</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>Drake, Barry James</creator><creator>Mehrseresht, Nagita</creator><scope>EVB</scope></search><sort><creationdate>20170706</creationdate><title>An imaging system and method for classifying a concept type in video</title><author>Drake, Barry James ; Mehrseresht, Nagita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2015271975A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Drake, Barry James</creatorcontrib><creatorcontrib>Mehrseresht, Nagita</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Drake, Barry James</au><au>Mehrseresht, Nagita</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>An imaging system and method for classifying a concept type in video</title><date>2017-07-06</date><risdate>2017</risdate><abstract>AN IMAGING SYSTEM AND METHOD FOR CLASSIFYING A CONCEPT TYPE IN A method and associated imaging system for classifying at least one concept type in a video segment is disclosed. The method associates (420) an object concept type in the video segment with a spatio-temporal segment of the video segment. The method then associates (450) a plurality of action concept types with the spatio-temporal segment, where each action concept type of the plurality of action concept types is associated with a subset of the spatio-temporal segment associated with the object concept type. The method then classifies the action concept types and the object concept types associated with the video segment using a conditional Markov random field (CRF) model where the CRF model is structured with the plurality of action concept types being independent and indirectly linked via a global concept type assigned to the video segment, and the object concept type is linked to the global concept type. 1R27414 1 (P144qn11 405 Tracking Fo ah410 4 Ta -For each track determine the spatio temporal segment (S, ) associated with that track 406 segment Associate a random variable (0) (S) with each spatio-temporal segment (s,) representing a type class of the object in the segment + 430 For each spatio-temporal segment S, ( ) calculate an object feature representation (xo,) Temporally segment the spatio temporal segment (s,) into a plurality of sub-segments (S,) 450 Associate a random variable (A,,) representing a type class of action with each sub-segment (SJe) For each sub-segment (Sit) calculate an action feature representation (xA,) Associate a global random variable (E) with the video segment (S) Calculate a global scene 1407 *classification feature representation (S) for (XE) Model Build a probabilistic graphical model 490 parameters using w and xE I 0i I XAi,, for all / }W and t Determine object type(s) , action type(s)49 Semantic and the scene type classification for theF tags 7-d segment ( S) by finding the MAP solution ( End )Fig. 4</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2015271975A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title An imaging system and method for classifying a concept type in video
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Drake,%20Barry%20James&rft.date=2017-07-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2015271975A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true