Method and apparatus for training a neural network model for use in computer network intrusion detection

Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificiall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: THANH A. DIEP, SHERIF M. BOTROS, MARTIN D. IZENSON
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator THANH A. DIEP
SHERIF M. BOTROS
MARTIN D. IZENSON
description Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificially creating a set of features reflecting anomalous behavior for a particular activity is performed. This is done in conjunction with the creation of normal-behavior feature values. A distribution of users of normal feature values and an expected distribution of users of anomalous feature values are then defined in the form of histograms. The anomalous-feature histogram is then sampled to produce anomalous-behavior feature values. These values are then used to train a model having a neural network training algorithm where the model is used in the computer network intrusion detection system. The model is trained such that it can efficiently recognize anomalous behavior by users in a dynamic computing environment where user behavior can change frequently.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU1575401A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU1575401A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU1575401A3</originalsourceid><addsrcrecordid>eNqFizEKwkAQRdNYiHoG5wKCQYN1EMXGTuswbCZmcTOzzM7i9V1EbC0-7xfvzavxSjZKD8hlMaKi5QSDKJiiZ88PQGDKiqHAXqJPmKSn8HFyIvAMTqaYjfRneDbNyQtDT0bOyltWswFDotWXi2p9Pt2Olw1F6ShFdFTqrr3XzaHZb-t29994AyiJP_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and apparatus for training a neural network model for use in computer network intrusion detection</title><source>esp@cenet</source><creator>THANH A. DIEP ; SHERIF M. BOTROS ; MARTIN D. IZENSON</creator><creatorcontrib>THANH A. DIEP ; SHERIF M. BOTROS ; MARTIN D. IZENSON</creatorcontrib><description>Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificially creating a set of features reflecting anomalous behavior for a particular activity is performed. This is done in conjunction with the creation of normal-behavior feature values. A distribution of users of normal feature values and an expected distribution of users of anomalous feature values are then defined in the form of histograms. The anomalous-feature histogram is then sampled to produce anomalous-behavior feature values. These values are then used to train a model having a neural network training algorithm where the model is used in the computer network intrusion detection system. The model is trained such that it can efficiently recognize anomalous behavior by users in a dynamic computing environment where user behavior can change frequently.</description><edition>7</edition><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2001</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20010508&amp;DB=EPODOC&amp;CC=AU&amp;NR=1575401A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20010508&amp;DB=EPODOC&amp;CC=AU&amp;NR=1575401A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>THANH A. DIEP</creatorcontrib><creatorcontrib>SHERIF M. BOTROS</creatorcontrib><creatorcontrib>MARTIN D. IZENSON</creatorcontrib><title>Method and apparatus for training a neural network model for use in computer network intrusion detection</title><description>Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificially creating a set of features reflecting anomalous behavior for a particular activity is performed. This is done in conjunction with the creation of normal-behavior feature values. A distribution of users of normal feature values and an expected distribution of users of anomalous feature values are then defined in the form of histograms. The anomalous-feature histogram is then sampled to produce anomalous-behavior feature values. These values are then used to train a model having a neural network training algorithm where the model is used in the computer network intrusion detection system. The model is trained such that it can efficiently recognize anomalous behavior by users in a dynamic computing environment where user behavior can change frequently.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2001</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqFizEKwkAQRdNYiHoG5wKCQYN1EMXGTuswbCZmcTOzzM7i9V1EbC0-7xfvzavxSjZKD8hlMaKi5QSDKJiiZ88PQGDKiqHAXqJPmKSn8HFyIvAMTqaYjfRneDbNyQtDT0bOyltWswFDotWXi2p9Pt2Olw1F6ShFdFTqrr3XzaHZb-t29994AyiJP_w</recordid><startdate>20010508</startdate><enddate>20010508</enddate><creator>THANH A. DIEP</creator><creator>SHERIF M. BOTROS</creator><creator>MARTIN D. IZENSON</creator><scope>EVB</scope></search><sort><creationdate>20010508</creationdate><title>Method and apparatus for training a neural network model for use in computer network intrusion detection</title><author>THANH A. DIEP ; SHERIF M. BOTROS ; MARTIN D. IZENSON</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU1575401A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2001</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>THANH A. DIEP</creatorcontrib><creatorcontrib>SHERIF M. BOTROS</creatorcontrib><creatorcontrib>MARTIN D. IZENSON</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>THANH A. DIEP</au><au>SHERIF M. BOTROS</au><au>MARTIN D. IZENSON</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and apparatus for training a neural network model for use in computer network intrusion detection</title><date>2001-05-08</date><risdate>2001</risdate><abstract>Detecting harmful or illegal intrusions into a computer network or into restricted portions of a computer network uses a process of synthesizing anomalous data to be used in training a neural network-based model for use in a computer network intrusion detection system. Anomalous data for artificially creating a set of features reflecting anomalous behavior for a particular activity is performed. This is done in conjunction with the creation of normal-behavior feature values. A distribution of users of normal feature values and an expected distribution of users of anomalous feature values are then defined in the form of histograms. The anomalous-feature histogram is then sampled to produce anomalous-behavior feature values. These values are then used to train a model having a neural network training algorithm where the model is used in the computer network intrusion detection system. The model is trained such that it can efficiently recognize anomalous behavior by users in a dynamic computing environment where user behavior can change frequently.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU1575401A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Method and apparatus for training a neural network model for use in computer network intrusion detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=THANH%20A.%20DIEP&rft.date=2001-05-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU1575401A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true