Non-Invasive Estimation of Local Field Potentials for Neuroprosthesis Control

Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Peralta Menendez, R. Grave de, González Andino, S. L, Perez, L, Ferrez, Pierre W, Millán, José del R
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Peralta Menendez, R. Grave de
González Andino, S. L
Perez, L
Ferrez, Pierre W
Millán, José del R
description Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions; i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using different number of electrodes.
doi_str_mv 10.1007/s10339-004-0043-x
format Web Resource
fullrecord <record><control><sourceid>epfl_F1K</sourceid><recordid>TN_cdi_epfl_infoscience_oai_infoscience_tind_io_83251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_infoscience_tind_io_83251</sourcerecordid><originalsourceid>FETCH-epfl_infoscience_oai_infoscience_tind_io_832513</originalsourceid><addsrcrecordid>eNqdi7EKwjAURbM4iPoBbvmBaGIs6lxaFFQc3EtoX_BBzCt5sfj5Kri4OlwOB84VYm70wmi9WbLR1u6U1uvPrHqOxelMUR3i4BgHkBVnvLuMFCV5eaTWBVkjhE5eKEPM6AJLT0me4ZGoT8T5BowsS4o5UZiKkX8nMPtyIoq6upZ7Bb0PDUZP3CLEFhpy-OMZY9cgNVu7Koz99_cCYS9Odg</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>Non-Invasive Estimation of Local Field Potentials for Neuroprosthesis Control</title><source>Infoscience: EPF Lausanne</source><creator>Peralta Menendez, R. Grave de ; González Andino, S. L ; Perez, L ; Ferrez, Pierre W ; Millán, José del R</creator><creatorcontrib>Peralta Menendez, R. Grave de ; González Andino, S. L ; Perez, L ; Ferrez, Pierre W ; Millán, José del R</creatorcontrib><description>Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions; i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using different number of electrodes.</description><identifier>DOI: 10.1007/s10339-004-0043-x</identifier><language>eng</language><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,780,27858</link.rule.ids><linktorsrc>$$Uhttp://infoscience.epfl.ch/record/83251$$EView_record_in_EPF_Lausanne$$FView_record_in_$$GEPF_Lausanne$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Peralta Menendez, R. Grave de</creatorcontrib><creatorcontrib>González Andino, S. L</creatorcontrib><creatorcontrib>Perez, L</creatorcontrib><creatorcontrib>Ferrez, Pierre W</creatorcontrib><creatorcontrib>Millán, José del R</creatorcontrib><title>Non-Invasive Estimation of Local Field Potentials for Neuroprosthesis Control</title><description>Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions; i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using different number of electrodes.</description><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><recordtype>web_resource</recordtype><sourceid>F1K</sourceid><recordid>eNqdi7EKwjAURbM4iPoBbvmBaGIs6lxaFFQc3EtoX_BBzCt5sfj5Kri4OlwOB84VYm70wmi9WbLR1u6U1uvPrHqOxelMUR3i4BgHkBVnvLuMFCV5eaTWBVkjhE5eKEPM6AJLT0me4ZGoT8T5BowsS4o5UZiKkX8nMPtyIoq6upZ7Bb0PDUZP3CLEFhpy-OMZY9cgNVu7Koz99_cCYS9Odg</recordid><creator>Peralta Menendez, R. Grave de</creator><creator>González Andino, S. L</creator><creator>Perez, L</creator><creator>Ferrez, Pierre W</creator><creator>Millán, José del R</creator><scope>F1K</scope></search><sort><title>Non-Invasive Estimation of Local Field Potentials for Neuroprosthesis Control</title><author>Peralta Menendez, R. Grave de ; González Andino, S. L ; Perez, L ; Ferrez, Pierre W ; Millán, José del R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epfl_infoscience_oai_infoscience_tind_io_832513</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng</language><toplevel>online_resources</toplevel><creatorcontrib>Peralta Menendez, R. Grave de</creatorcontrib><creatorcontrib>González Andino, S. L</creatorcontrib><creatorcontrib>Perez, L</creatorcontrib><creatorcontrib>Ferrez, Pierre W</creatorcontrib><creatorcontrib>Millán, José del R</creatorcontrib><collection>Infoscience: EPF Lausanne</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peralta Menendez, R. Grave de</au><au>González Andino, S. L</au><au>Perez, L</au><au>Ferrez, Pierre W</au><au>Millán, José del R</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>Non-Invasive Estimation of Local Field Potentials for Neuroprosthesis Control</btitle><abstract>Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions; i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using different number of electrodes.</abstract><doi>10.1007/s10339-004-0043-x</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1007/s10339-004-0043-x
ispartof
issn
language eng
recordid cdi_epfl_infoscience_oai_infoscience_tind_io_83251
source Infoscience: EPF Lausanne
title Non-Invasive Estimation of Local Field Potentials for Neuroprosthesis Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epfl_F1K&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Non-Invasive%20Estimation%20of%20Local%20Field%20Potentials%20for%20Neuroprosthesis%20Control&rft.au=Peralta%20Menendez,%20R.%20Grave%20de&rft_id=info:doi/10.1007/s10339-004-0043-x&rft_dat=%3Cepfl_F1K%3Eoai_infoscience_tind_io_83251%3C/epfl_F1K%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true