Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode

The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on insulating MgO buffered, oxidized silicon sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chidambaram, N, Balma, D, Nigon, R, Mazzalai, A, Matloub, R, Sandu, C. S, Muralt, P
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chidambaram, N
Balma, D
Nigon, R
Mazzalai, A
Matloub, R
Sandu, C. S
Muralt, P
description The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on insulating MgO buffered, oxidized silicon substrates. IDEs were fabricated by lift-off techniques and cantilevers were formed by dicing. The deflection upon application of a sweeping voltage was measured as large signal response in parallel to the ferroelectric polarization (PV loop). Likewise, the small signal piezoelectric response was measured in parallel to the capacitance-voltage (CV) measurement. In this way, a complete picture of the ferroelectric-piezoelectric element was obtained. From the deflection, the in-plane piezoelectric stress in the PZT thin film was derived and, from this, the effective piezoelectric coefficients. For the latter, two types were defined: an engineering type corresponding to the average value along the IDE, which can directly be compared to coefficient of a parallel plate electrode (PPE) capacitor and a second one that approximately yields the idealized coefficient governing between the electrode fingers. The IDE structures were experimentally compared with PPE structures of identical film thickness. The resulting coefficients were of opposite sign, as expected. In spite of a much better polarization loop, the IDE device showed a lower average piezoelectric stress. The estimated peak value between the fingers was about the same as in the PPE device, corresponding to about 20 C m(-2). Nevertheless, the result is very promising for cases where compressive piezoelectric stresses are required and for preventing cracking due to large piezoelectric tensile stresses in PPE systems.
doi_str_mv 10.1088/0960-1317/25/4/045016
format Web Resource
fullrecord <record><control><sourceid>epfl_F1K</sourceid><recordid>TN_cdi_epfl_infoscience_oai_infoscience_tind_io_208289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_infoscience_tind_io_208289</sourcerecordid><originalsourceid>FETCH-epfl_infoscience_oai_infoscience_tind_io_2082893</originalsourceid><addsrcrecordid>eNqdjcEKwjAQRHPxIOonCPsD2qTW2p5F8QO8l5BsdDFmS7oo-PUqevHqaWYY5o1Sc6OXRjdNodtaL8zKbIpyXVSFrtba1GN12XK6YR4QruwResIHY0QnmRw4xhDIESaBwBkiWg8Pyo6TFQQhsR9zpgSB4hXuJGegJJg9nV61oIcP7kWfqlGwccDZVyeq3u-O28MC-xA7SoGH95fDji39ZKHkO-Ku1E3ZtKu_h0-Ng1tk</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode</title><source>Infoscience: EPF Lausanne</source><creator>Chidambaram, N ; Balma, D ; Nigon, R ; Mazzalai, A ; Matloub, R ; Sandu, C. S ; Muralt, P</creator><creatorcontrib>Chidambaram, N ; Balma, D ; Nigon, R ; Mazzalai, A ; Matloub, R ; Sandu, C. S ; Muralt, P</creatorcontrib><description>The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on insulating MgO buffered, oxidized silicon substrates. IDEs were fabricated by lift-off techniques and cantilevers were formed by dicing. The deflection upon application of a sweeping voltage was measured as large signal response in parallel to the ferroelectric polarization (PV loop). Likewise, the small signal piezoelectric response was measured in parallel to the capacitance-voltage (CV) measurement. In this way, a complete picture of the ferroelectric-piezoelectric element was obtained. From the deflection, the in-plane piezoelectric stress in the PZT thin film was derived and, from this, the effective piezoelectric coefficients. For the latter, two types were defined: an engineering type corresponding to the average value along the IDE, which can directly be compared to coefficient of a parallel plate electrode (PPE) capacitor and a second one that approximately yields the idealized coefficient governing between the electrode fingers. The IDE structures were experimentally compared with PPE structures of identical film thickness. The resulting coefficients were of opposite sign, as expected. In spite of a much better polarization loop, the IDE device showed a lower average piezoelectric stress. The estimated peak value between the fingers was about the same as in the PPE device, corresponding to about 20 C m(-2). Nevertheless, the result is very promising for cases where compressive piezoelectric stresses are required and for preventing cracking due to large piezoelectric tensile stresses in PPE systems.</description><identifier>DOI: 10.1088/0960-1317/25/4/045016</identifier><language>eng</language><publisher>Bristol, Institute of Physics</publisher><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,777,27841</link.rule.ids><linktorsrc>$$Uhttp://infoscience.epfl.ch/record/208289$$EView_record_in_EPF_Lausanne$$FView_record_in_$$GEPF_Lausanne$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chidambaram, N</creatorcontrib><creatorcontrib>Balma, D</creatorcontrib><creatorcontrib>Nigon, R</creatorcontrib><creatorcontrib>Mazzalai, A</creatorcontrib><creatorcontrib>Matloub, R</creatorcontrib><creatorcontrib>Sandu, C. S</creatorcontrib><creatorcontrib>Muralt, P</creatorcontrib><title>Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode</title><description>The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on insulating MgO buffered, oxidized silicon substrates. IDEs were fabricated by lift-off techniques and cantilevers were formed by dicing. The deflection upon application of a sweeping voltage was measured as large signal response in parallel to the ferroelectric polarization (PV loop). Likewise, the small signal piezoelectric response was measured in parallel to the capacitance-voltage (CV) measurement. In this way, a complete picture of the ferroelectric-piezoelectric element was obtained. From the deflection, the in-plane piezoelectric stress in the PZT thin film was derived and, from this, the effective piezoelectric coefficients. For the latter, two types were defined: an engineering type corresponding to the average value along the IDE, which can directly be compared to coefficient of a parallel plate electrode (PPE) capacitor and a second one that approximately yields the idealized coefficient governing between the electrode fingers. The IDE structures were experimentally compared with PPE structures of identical film thickness. The resulting coefficients were of opposite sign, as expected. In spite of a much better polarization loop, the IDE device showed a lower average piezoelectric stress. The estimated peak value between the fingers was about the same as in the PPE device, corresponding to about 20 C m(-2). Nevertheless, the result is very promising for cases where compressive piezoelectric stresses are required and for preventing cracking due to large piezoelectric tensile stresses in PPE systems.</description><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><recordtype>web_resource</recordtype><sourceid>F1K</sourceid><recordid>eNqdjcEKwjAQRHPxIOonCPsD2qTW2p5F8QO8l5BsdDFmS7oo-PUqevHqaWYY5o1Sc6OXRjdNodtaL8zKbIpyXVSFrtba1GN12XK6YR4QruwResIHY0QnmRw4xhDIESaBwBkiWg8Pyo6TFQQhsR9zpgSB4hXuJGegJJg9nV61oIcP7kWfqlGwccDZVyeq3u-O28MC-xA7SoGH95fDji39ZKHkO-Ku1E3ZtKu_h0-Ng1tk</recordid><creator>Chidambaram, N</creator><creator>Balma, D</creator><creator>Nigon, R</creator><creator>Mazzalai, A</creator><creator>Matloub, R</creator><creator>Sandu, C. S</creator><creator>Muralt, P</creator><general>Bristol, Institute of Physics</general><scope>F1K</scope></search><sort><title>Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode</title><author>Chidambaram, N ; Balma, D ; Nigon, R ; Mazzalai, A ; Matloub, R ; Sandu, C. S ; Muralt, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epfl_infoscience_oai_infoscience_tind_io_2082893</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng</language><toplevel>online_resources</toplevel><creatorcontrib>Chidambaram, N</creatorcontrib><creatorcontrib>Balma, D</creatorcontrib><creatorcontrib>Nigon, R</creatorcontrib><creatorcontrib>Mazzalai, A</creatorcontrib><creatorcontrib>Matloub, R</creatorcontrib><creatorcontrib>Sandu, C. S</creatorcontrib><creatorcontrib>Muralt, P</creatorcontrib><collection>Infoscience: EPF Lausanne</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chidambaram, N</au><au>Balma, D</au><au>Nigon, R</au><au>Mazzalai, A</au><au>Matloub, R</au><au>Sandu, C. S</au><au>Muralt, P</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode</btitle><abstract>The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on insulating MgO buffered, oxidized silicon substrates. IDEs were fabricated by lift-off techniques and cantilevers were formed by dicing. The deflection upon application of a sweeping voltage was measured as large signal response in parallel to the ferroelectric polarization (PV loop). Likewise, the small signal piezoelectric response was measured in parallel to the capacitance-voltage (CV) measurement. In this way, a complete picture of the ferroelectric-piezoelectric element was obtained. From the deflection, the in-plane piezoelectric stress in the PZT thin film was derived and, from this, the effective piezoelectric coefficients. For the latter, two types were defined: an engineering type corresponding to the average value along the IDE, which can directly be compared to coefficient of a parallel plate electrode (PPE) capacitor and a second one that approximately yields the idealized coefficient governing between the electrode fingers. The IDE structures were experimentally compared with PPE structures of identical film thickness. The resulting coefficients were of opposite sign, as expected. In spite of a much better polarization loop, the IDE device showed a lower average piezoelectric stress. The estimated peak value between the fingers was about the same as in the PPE device, corresponding to about 20 C m(-2). Nevertheless, the result is very promising for cases where compressive piezoelectric stresses are required and for preventing cracking due to large piezoelectric tensile stresses in PPE systems.</abstract><pub>Bristol, Institute of Physics</pub><doi>10.1088/0960-1317/25/4/045016</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1088/0960-1317/25/4/045016
ispartof
issn
language eng
recordid cdi_epfl_infoscience_oai_infoscience_tind_io_208289
source Infoscience: EPF Lausanne
title Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epfl_F1K&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Converse%20mode%20piezoelectric%20coefficient%20for%20lead%20zirconate%20titanate%20thin%20film%20with%20interdigitated%20electrode&rft.au=Chidambaram,%20N&rft_id=info:doi/10.1088/0960-1317/25/4/045016&rft_dat=%3Cepfl_F1K%3Eoai_infoscience_tind_io_208289%3C/epfl_F1K%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true