Multiple Independent Gate FETs: How Many Gates Do We Need?

Multiple Independent Gate Field Effect Transistors (MIGFETs) are expected to push FET technology further into the semiconductor roadmap. In a MIGFET, supplementary gates either provide (i) enhanced conduction properties or (ii) more intelligent switching functions. In general, each additional gate a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Amarù, Luca, Hills, Gage, Gaillardon, Pierre-Emmanuel, Mitra, Subhasish, De Micheli, Giovanni
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Amarù, Luca
Hills, Gage
Gaillardon, Pierre-Emmanuel
Mitra, Subhasish
De Micheli, Giovanni
description Multiple Independent Gate Field Effect Transistors (MIGFETs) are expected to push FET technology further into the semiconductor roadmap. In a MIGFET, supplementary gates either provide (i) enhanced conduction properties or (ii) more intelligent switching functions. In general, each additional gate also introduces a side implementation cost. To enable more efficient digital systems, MIGFETs must leverage their expressive power to realize complex logic circuits with few physical resources. Researchers face then the question: How many gates do we need? In this paper, we address the logic side of this question. We determine whether or not an increasing number of gates leads to more compact logic implementations. For this purpose, we de- velop a logic synthesis flow that intrinsically exploits a MIGFET switching function. Using simplified design assumptions and device/interconnect models, we synthesize MCNC benchmarks on 5 promising MIGFET devices, with number of gates ranging from 1 to 7. Experimental results evidence nontrivial area/delay/energy minima, located between 1 and 4 gates, depending on a MIGFET switching function and device/interconnect technology.
doi_str_mv 10.1109/ASPDAC.2015.7059012
format Web Resource
fullrecord <record><control><sourceid>epfl_F1K</sourceid><recordid>TN_cdi_epfl_infoscience_oai_infoscience_tind_io_201564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_infoscience_tind_io_201564</sourcerecordid><originalsourceid>FETCH-epfl_infoscience_oai_infoscience_tind_io_2015643</originalsourceid><addsrcrecordid>eNpjYJA2NNAzNDSw1HcMDnBxdNYzMjA01TM3MLU0MDTiZLDyLc0pySzISVXwzEtJLUgFEnklCu6JJakKbq4hxVYKHvnlCr6JeZVgsWIFl3yF8FQFv9TUFHseBta0xJziVF4ozc1gBtTi7KGbWpCWE5-Zl5ZfnJyZmpecGp-fmInCL8nMS4nPzI8HOcXMxJhsjQA1JUX1</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>Multiple Independent Gate FETs: How Many Gates Do We Need?</title><source>Infoscience: EPF Lausanne</source><creator>Amarù, Luca ; Hills, Gage ; Gaillardon, Pierre-Emmanuel ; Mitra, Subhasish ; De Micheli, Giovanni</creator><creatorcontrib>Amarù, Luca ; Hills, Gage ; Gaillardon, Pierre-Emmanuel ; Mitra, Subhasish ; De Micheli, Giovanni</creatorcontrib><description>Multiple Independent Gate Field Effect Transistors (MIGFETs) are expected to push FET technology further into the semiconductor roadmap. In a MIGFET, supplementary gates either provide (i) enhanced conduction properties or (ii) more intelligent switching functions. In general, each additional gate also introduces a side implementation cost. To enable more efficient digital systems, MIGFETs must leverage their expressive power to realize complex logic circuits with few physical resources. Researchers face then the question: How many gates do we need? In this paper, we address the logic side of this question. We determine whether or not an increasing number of gates leads to more compact logic implementations. For this purpose, we de- velop a logic synthesis flow that intrinsically exploits a MIGFET switching function. Using simplified design assumptions and device/interconnect models, we synthesize MCNC benchmarks on 5 promising MIGFET devices, with number of gates ranging from 1 to 7. Experimental results evidence nontrivial area/delay/energy minima, located between 1 and 4 gates, depending on a MIGFET switching function and device/interconnect technology.</description><identifier>DOI: 10.1109/ASPDAC.2015.7059012</identifier><language>eng</language><publisher>IEEE</publisher><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27839</link.rule.ids><linktorsrc>$$Uhttp://infoscience.epfl.ch/record/201564$$EView_record_in_EPF_Lausanne$$FView_record_in_$$GEPF_Lausanne$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Amarù, Luca</creatorcontrib><creatorcontrib>Hills, Gage</creatorcontrib><creatorcontrib>Gaillardon, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Mitra, Subhasish</creatorcontrib><creatorcontrib>De Micheli, Giovanni</creatorcontrib><title>Multiple Independent Gate FETs: How Many Gates Do We Need?</title><description>Multiple Independent Gate Field Effect Transistors (MIGFETs) are expected to push FET technology further into the semiconductor roadmap. In a MIGFET, supplementary gates either provide (i) enhanced conduction properties or (ii) more intelligent switching functions. In general, each additional gate also introduces a side implementation cost. To enable more efficient digital systems, MIGFETs must leverage their expressive power to realize complex logic circuits with few physical resources. Researchers face then the question: How many gates do we need? In this paper, we address the logic side of this question. We determine whether or not an increasing number of gates leads to more compact logic implementations. For this purpose, we de- velop a logic synthesis flow that intrinsically exploits a MIGFET switching function. Using simplified design assumptions and device/interconnect models, we synthesize MCNC benchmarks on 5 promising MIGFET devices, with number of gates ranging from 1 to 7. Experimental results evidence nontrivial area/delay/energy minima, located between 1 and 4 gates, depending on a MIGFET switching function and device/interconnect technology.</description><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><recordtype>web_resource</recordtype><sourceid>F1K</sourceid><recordid>eNpjYJA2NNAzNDSw1HcMDnBxdNYzMjA01TM3MLU0MDTiZLDyLc0pySzISVXwzEtJLUgFEnklCu6JJakKbq4hxVYKHvnlCr6JeZVgsWIFl3yF8FQFv9TUFHseBta0xJziVF4ozc1gBtTi7KGbWpCWE5-Zl5ZfnJyZmpecGp-fmInCL8nMS4nPzI8HOcXMxJhsjQA1JUX1</recordid><creator>Amarù, Luca</creator><creator>Hills, Gage</creator><creator>Gaillardon, Pierre-Emmanuel</creator><creator>Mitra, Subhasish</creator><creator>De Micheli, Giovanni</creator><general>IEEE</general><scope>F1K</scope></search><sort><title>Multiple Independent Gate FETs: How Many Gates Do We Need?</title><author>Amarù, Luca ; Hills, Gage ; Gaillardon, Pierre-Emmanuel ; Mitra, Subhasish ; De Micheli, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epfl_infoscience_oai_infoscience_tind_io_2015643</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng</language><toplevel>online_resources</toplevel><creatorcontrib>Amarù, Luca</creatorcontrib><creatorcontrib>Hills, Gage</creatorcontrib><creatorcontrib>Gaillardon, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Mitra, Subhasish</creatorcontrib><creatorcontrib>De Micheli, Giovanni</creatorcontrib><collection>Infoscience: EPF Lausanne</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amarù, Luca</au><au>Hills, Gage</au><au>Gaillardon, Pierre-Emmanuel</au><au>Mitra, Subhasish</au><au>De Micheli, Giovanni</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>Multiple Independent Gate FETs: How Many Gates Do We Need?</btitle><abstract>Multiple Independent Gate Field Effect Transistors (MIGFETs) are expected to push FET technology further into the semiconductor roadmap. In a MIGFET, supplementary gates either provide (i) enhanced conduction properties or (ii) more intelligent switching functions. In general, each additional gate also introduces a side implementation cost. To enable more efficient digital systems, MIGFETs must leverage their expressive power to realize complex logic circuits with few physical resources. Researchers face then the question: How many gates do we need? In this paper, we address the logic side of this question. We determine whether or not an increasing number of gates leads to more compact logic implementations. For this purpose, we de- velop a logic synthesis flow that intrinsically exploits a MIGFET switching function. Using simplified design assumptions and device/interconnect models, we synthesize MCNC benchmarks on 5 promising MIGFET devices, with number of gates ranging from 1 to 7. Experimental results evidence nontrivial area/delay/energy minima, located between 1 and 4 gates, depending on a MIGFET switching function and device/interconnect technology.</abstract><pub>IEEE</pub><doi>10.1109/ASPDAC.2015.7059012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1109/ASPDAC.2015.7059012
ispartof
issn
language eng
recordid cdi_epfl_infoscience_oai_infoscience_tind_io_201564
source Infoscience: EPF Lausanne
title Multiple Independent Gate FETs: How Many Gates Do We Need?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epfl_F1K&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Multiple%20Independent%20Gate%20FETs:%20How%20Many%20Gates%20Do%20We%20Need?&rft.au=Amar%C3%B9,%20Luca&rft_id=info:doi/10.1109/ASPDAC.2015.7059012&rft_dat=%3Cepfl_F1K%3Eoai_infoscience_tind_io_201564%3C/epfl_F1K%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true