Learning dictionaries of spatial and temporal EEG primitives for brain-computer interfaces

Sparse methods are widely used in image and audio processing for denoising and classification, but there have been few previous applications to neural signals for brain-computer interfaces (BCIs). We used the dictionary- learning algorithm K-SVD, coupled with Orthogonal Matching Pursuit, to learn di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hamner, Benjamin, Chavarriaga, Ricardo, Millán, José del R
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hamner, Benjamin
Chavarriaga, Ricardo
Millán, José del R
description Sparse methods are widely used in image and audio processing for denoising and classification, but there have been few previous applications to neural signals for brain-computer interfaces (BCIs). We used the dictionary- learning algorithm K-SVD, coupled with Orthogonal Matching Pursuit, to learn dictionaries of spatial and temporal EEG primitives. We applied these to P300 and ErrP data to denoise the EEG and better estimate the underlying P300 and ErrP signals. This methodology improved single-trial classification performance across 13 of 14 subjects, indicating that some of the background noise in EEG signals, presumably from neural or muscular sources, is highly structured. Furthermore, this structure can be captured via dictionary learning and sparse coding algorithms, and exploited to improve BCIs.
format Web Resource
fullrecord <record><control><sourceid>epfl_F1K</sourceid><recordid>TN_cdi_epfl_infoscience_oai_infoscience_tind_io_166740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_infoscience_tind_io_166740</sourcerecordid><originalsourceid>FETCH-epfl_infoscience_oai_infoscience_tind_io_1667403</originalsourceid><addsrcrecordid>eNqdizEKwkAQRdNYiHqHuYCgKPEAErWwtLJZxs2sfEhmltnV85vCxtbmfR78N2_uV2FX6JN6xApTdkghS1QyV_BArD1VGbP5JF13puwYUfGebsmcHs7QdbQxv6o4QScmjlKWzSzxUGT13UXTnrrb8bKWnIYATVYiRKMEY_x4hfYBFrZte9hvdn-HH3rKTnU</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>Learning dictionaries of spatial and temporal EEG primitives for brain-computer interfaces</title><source>Infoscience: EPF Lausanne</source><creator>Hamner, Benjamin ; Chavarriaga, Ricardo ; Millán, José del R</creator><creatorcontrib>Hamner, Benjamin ; Chavarriaga, Ricardo ; Millán, José del R</creatorcontrib><description>Sparse methods are widely used in image and audio processing for denoising and classification, but there have been few previous applications to neural signals for brain-computer interfaces (BCIs). We used the dictionary- learning algorithm K-SVD, coupled with Orthogonal Matching Pursuit, to learn dictionaries of spatial and temporal EEG primitives. We applied these to P300 and ErrP data to denoise the EEG and better estimate the underlying P300 and ErrP signals. This methodology improved single-trial classification performance across 13 of 14 subjects, indicating that some of the background noise in EEG signals, presumably from neural or muscular sources, is highly structured. Furthermore, this structure can be captured via dictionary learning and sparse coding algorithms, and exploited to improve BCIs.</description><language>eng</language><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,778,27843</link.rule.ids><linktorsrc>$$Uhttp://infoscience.epfl.ch/record/166740$$EView_record_in_EPF_Lausanne$$FView_record_in_$$GEPF_Lausanne$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hamner, Benjamin</creatorcontrib><creatorcontrib>Chavarriaga, Ricardo</creatorcontrib><creatorcontrib>Millán, José del R</creatorcontrib><title>Learning dictionaries of spatial and temporal EEG primitives for brain-computer interfaces</title><description>Sparse methods are widely used in image and audio processing for denoising and classification, but there have been few previous applications to neural signals for brain-computer interfaces (BCIs). We used the dictionary- learning algorithm K-SVD, coupled with Orthogonal Matching Pursuit, to learn dictionaries of spatial and temporal EEG primitives. We applied these to P300 and ErrP data to denoise the EEG and better estimate the underlying P300 and ErrP signals. This methodology improved single-trial classification performance across 13 of 14 subjects, indicating that some of the background noise in EEG signals, presumably from neural or muscular sources, is highly structured. Furthermore, this structure can be captured via dictionary learning and sparse coding algorithms, and exploited to improve BCIs.</description><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><recordtype>web_resource</recordtype><sourceid>F1K</sourceid><recordid>eNqdizEKwkAQRdNYiHqHuYCgKPEAErWwtLJZxs2sfEhmltnV85vCxtbmfR78N2_uV2FX6JN6xApTdkghS1QyV_BArD1VGbP5JF13puwYUfGebsmcHs7QdbQxv6o4QScmjlKWzSzxUGT13UXTnrrb8bKWnIYATVYiRKMEY_x4hfYBFrZte9hvdn-HH3rKTnU</recordid><creator>Hamner, Benjamin</creator><creator>Chavarriaga, Ricardo</creator><creator>Millán, José del R</creator><scope>F1K</scope></search><sort><title>Learning dictionaries of spatial and temporal EEG primitives for brain-computer interfaces</title><author>Hamner, Benjamin ; Chavarriaga, Ricardo ; Millán, José del R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epfl_infoscience_oai_infoscience_tind_io_1667403</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng</language><toplevel>online_resources</toplevel><creatorcontrib>Hamner, Benjamin</creatorcontrib><creatorcontrib>Chavarriaga, Ricardo</creatorcontrib><creatorcontrib>Millán, José del R</creatorcontrib><collection>Infoscience: EPF Lausanne</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamner, Benjamin</au><au>Chavarriaga, Ricardo</au><au>Millán, José del R</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>Learning dictionaries of spatial and temporal EEG primitives for brain-computer interfaces</btitle><abstract>Sparse methods are widely used in image and audio processing for denoising and classification, but there have been few previous applications to neural signals for brain-computer interfaces (BCIs). We used the dictionary- learning algorithm K-SVD, coupled with Orthogonal Matching Pursuit, to learn dictionaries of spatial and temporal EEG primitives. We applied these to P300 and ErrP data to denoise the EEG and better estimate the underlying P300 and ErrP signals. This methodology improved single-trial classification performance across 13 of 14 subjects, indicating that some of the background noise in EEG signals, presumably from neural or muscular sources, is highly structured. Furthermore, this structure can be captured via dictionary learning and sparse coding algorithms, and exploited to improve BCIs.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epfl_infoscience_oai_infoscience_tind_io_166740
source Infoscience: EPF Lausanne
title Learning dictionaries of spatial and temporal EEG primitives for brain-computer interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epfl_F1K&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Learning%20dictionaries%20of%20spatial%20and%20temporal%20EEG%20primitives%20for%20brain-computer%20interfaces&rft.au=Hamner,%20Benjamin&rft_id=info:doi/&rft_dat=%3Cepfl_F1K%3Eoai_infoscience_tind_io_166740%3C/epfl_F1K%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true