Analysis of Multi-Objective Evolutionary Algorithms to Optimize Dynamic Data Types in Embedded Systems

New multimedia embedded applications are increasingly dynamic, and rely on Dynamically-allocated Data Types (DDTs) to store their data. The optimization of DDTs for each target embedded system is a time-consuming process due to the large design space of possible DDTs implementations. Thus, suitable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hidalgo, Jose I, Risco, Jose L, Atienza, David, Lanchares, Juan
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hidalgo, Jose I
Risco, Jose L
Atienza, David
Lanchares, Juan
description New multimedia embedded applications are increasingly dynamic, and rely on Dynamically-allocated Data Types (DDTs) to store their data. The optimization of DDTs for each target embedded system is a time-consuming process due to the large design space of possible DDTs implementations. Thus, suitable exploration methods for embedded design metrics (memory accesses, memory usage and power consumption) need to be developed. In this work we present a detailed analysis of the characteristics of different types of Multi-Objective Evolutionary Algorithms (MOEAs) to tackle the optimization of DDTs in multimedia applications and compare them with other state-of-the-art heuristics. Our results with state-of-the-art MOEAs in two object-oriented multimedia embedded applications show that more sophisticated MOEAs (SPEA2 and NSGA-II) offer better solutions than simple schemes (VEGA). Moreover, the suitable sophisticated scheme varies according to the available exploration time, namely, NSGA-II outperforms SPEA2 in the first set of solutions (300-500 generations), while SPEA2 offers better solutions afterwards.
format Web Resource
fullrecord <record><control><sourceid>epfl_F1K</sourceid><recordid>TN_cdi_epfl_infoscience_oai_infoscience_tind_io_129066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_infoscience_tind_io_129066</sourcerecordid><originalsourceid>FETCH-epfl_infoscience_oai_infoscience_tind_io_1290663</originalsourceid><addsrcrecordid>eNqdy7sKwkAQQNE0FqL-w_xAwAcELMVEbCSF6ZfN7qyO7CNkJoH1621sbK0up7jLwp2i9pmJITm4TV6obPsXGqEZoZmTn4RS1GOGk3-kkeQZGCRBOwgFeiPUOepABmotGro8IANFaEKP1qKFe2bBwOti4bRn3Hy7KqpL052vJQ7OK4ousSGMBlXS9GOhaBUltdsft1V1-Hv8AEHSUoE</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>Analysis of Multi-Objective Evolutionary Algorithms to Optimize Dynamic Data Types in Embedded Systems</title><source>Infoscience: EPF Lausanne</source><creator>Hidalgo, Jose I ; Risco, Jose L ; Atienza, David ; Lanchares, Juan</creator><creatorcontrib>Hidalgo, Jose I ; Risco, Jose L ; Atienza, David ; Lanchares, Juan</creatorcontrib><description>New multimedia embedded applications are increasingly dynamic, and rely on Dynamically-allocated Data Types (DDTs) to store their data. The optimization of DDTs for each target embedded system is a time-consuming process due to the large design space of possible DDTs implementations. Thus, suitable exploration methods for embedded design metrics (memory accesses, memory usage and power consumption) need to be developed. In this work we present a detailed analysis of the characteristics of different types of Multi-Objective Evolutionary Algorithms (MOEAs) to tackle the optimization of DDTs in multimedia applications and compare them with other state-of-the-art heuristics. Our results with state-of-the-art MOEAs in two object-oriented multimedia embedded applications show that more sophisticated MOEAs (SPEA2 and NSGA-II) offer better solutions than simple schemes (VEGA). Moreover, the suitable sophisticated scheme varies according to the available exploration time, namely, NSGA-II outperforms SPEA2 in the first set of solutions (300-500 generations), while SPEA2 offers better solutions afterwards.</description><language>eng</language><publisher>Atlanta, ACM</publisher><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27839</link.rule.ids><linktorsrc>$$Uhttp://infoscience.epfl.ch/record/129066$$EView_record_in_EPF_Lausanne$$FView_record_in_$$GEPF_Lausanne$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hidalgo, Jose I</creatorcontrib><creatorcontrib>Risco, Jose L</creatorcontrib><creatorcontrib>Atienza, David</creatorcontrib><creatorcontrib>Lanchares, Juan</creatorcontrib><title>Analysis of Multi-Objective Evolutionary Algorithms to Optimize Dynamic Data Types in Embedded Systems</title><description>New multimedia embedded applications are increasingly dynamic, and rely on Dynamically-allocated Data Types (DDTs) to store their data. The optimization of DDTs for each target embedded system is a time-consuming process due to the large design space of possible DDTs implementations. Thus, suitable exploration methods for embedded design metrics (memory accesses, memory usage and power consumption) need to be developed. In this work we present a detailed analysis of the characteristics of different types of Multi-Objective Evolutionary Algorithms (MOEAs) to tackle the optimization of DDTs in multimedia applications and compare them with other state-of-the-art heuristics. Our results with state-of-the-art MOEAs in two object-oriented multimedia embedded applications show that more sophisticated MOEAs (SPEA2 and NSGA-II) offer better solutions than simple schemes (VEGA). Moreover, the suitable sophisticated scheme varies according to the available exploration time, namely, NSGA-II outperforms SPEA2 in the first set of solutions (300-500 generations), while SPEA2 offers better solutions afterwards.</description><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><recordtype>web_resource</recordtype><sourceid>F1K</sourceid><recordid>eNqdy7sKwkAQQNE0FqL-w_xAwAcELMVEbCSF6ZfN7qyO7CNkJoH1621sbK0up7jLwp2i9pmJITm4TV6obPsXGqEZoZmTn4RS1GOGk3-kkeQZGCRBOwgFeiPUOepABmotGro8IANFaEKP1qKFe2bBwOti4bRn3Hy7KqpL052vJQ7OK4ousSGMBlXS9GOhaBUltdsft1V1-Hv8AEHSUoE</recordid><creator>Hidalgo, Jose I</creator><creator>Risco, Jose L</creator><creator>Atienza, David</creator><creator>Lanchares, Juan</creator><general>Atlanta, ACM</general><scope>F1K</scope></search><sort><title>Analysis of Multi-Objective Evolutionary Algorithms to Optimize Dynamic Data Types in Embedded Systems</title><author>Hidalgo, Jose I ; Risco, Jose L ; Atienza, David ; Lanchares, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epfl_infoscience_oai_infoscience_tind_io_1290663</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng</language><toplevel>online_resources</toplevel><creatorcontrib>Hidalgo, Jose I</creatorcontrib><creatorcontrib>Risco, Jose L</creatorcontrib><creatorcontrib>Atienza, David</creatorcontrib><creatorcontrib>Lanchares, Juan</creatorcontrib><collection>Infoscience: EPF Lausanne</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hidalgo, Jose I</au><au>Risco, Jose L</au><au>Atienza, David</au><au>Lanchares, Juan</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>Analysis of Multi-Objective Evolutionary Algorithms to Optimize Dynamic Data Types in Embedded Systems</btitle><abstract>New multimedia embedded applications are increasingly dynamic, and rely on Dynamically-allocated Data Types (DDTs) to store their data. The optimization of DDTs for each target embedded system is a time-consuming process due to the large design space of possible DDTs implementations. Thus, suitable exploration methods for embedded design metrics (memory accesses, memory usage and power consumption) need to be developed. In this work we present a detailed analysis of the characteristics of different types of Multi-Objective Evolutionary Algorithms (MOEAs) to tackle the optimization of DDTs in multimedia applications and compare them with other state-of-the-art heuristics. Our results with state-of-the-art MOEAs in two object-oriented multimedia embedded applications show that more sophisticated MOEAs (SPEA2 and NSGA-II) offer better solutions than simple schemes (VEGA). Moreover, the suitable sophisticated scheme varies according to the available exploration time, namely, NSGA-II outperforms SPEA2 in the first set of solutions (300-500 generations), while SPEA2 offers better solutions afterwards.</abstract><pub>Atlanta, ACM</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epfl_infoscience_oai_infoscience_tind_io_129066
source Infoscience: EPF Lausanne
title Analysis of Multi-Objective Evolutionary Algorithms to Optimize Dynamic Data Types in Embedded Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epfl_F1K&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Analysis%20of%20Multi-Objective%20Evolutionary%20Algorithms%20to%20Optimize%20Dynamic%20Data%20Types%20in%20Embedded%20Systems&rft.au=Hidalgo,%20Jose%20I&rft_id=info:doi/&rft_dat=%3Cepfl_F1K%3Eoai_infoscience_tind_io_129066%3C/epfl_F1K%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true