Vapor Transport Deposition of Methylammonium Iodide for Perovskite Solar Cells

Vapor-based processes are promising options to deposit metal halide perovskite solar cells in an industrial environment due to their ability to deposit uniform layers over large areas in a controlled environment without resorting to the use of (possibly toxic) solvents. In addition, they yield confo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sahli, Florent, Miaz, Nathanaël, Salsi, Niccolò, Bucher, Cédric, Schafflützel, Aymeric, Guesnay, Quentin, Duchêne, Léo, Niesen, Björn, Ballif, Christophe, Jeangros, Quentin
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sahli, Florent
Miaz, Nathanaël
Salsi, Niccolò
Bucher, Cédric
Schafflützel, Aymeric
Guesnay, Quentin
Duchêne, Léo
Niesen, Björn
Ballif, Christophe
Jeangros, Quentin
description Vapor-based processes are promising options to deposit metal halide perovskite solar cells in an industrial environment due to their ability to deposit uniform layers over large areas in a controlled environment without resorting to the use of (possibly toxic) solvents. In addition, they yield conformal layers on rough substrates, an important aspect in view of producing perovskite/ crystalline silicon tandem solar cells featuring a textured silicon wafer for light management. While the inorganic precursors of the perovskite are well suited for thermal evaporation in high vacuum, the sublimation of the organic ones is more complex to control due to their high vapor pressure. To tackle this issue, we developed a vapor transport deposition chamber for organohalide deposition that physically dissociates the organic vapor evaporation zone from the deposition chamber. Once evaporated, organic vapors, here methylammonium iodide (MAI), are transported to the deposition chamber by a carrier gas through a showerhead, ensuring a spatially homogeneous conversion of PbI2 templates to the perovskite phase. The method enables the production of homogeneous perovskite layers on a textured 6 in. wafer. Furthermore, small-scale methylammonium lead iodide solar cells are also processed to validate the quality of the absorbers produced by this hybrid thermal evaporation/vapor transport deposition process.
doi_str_mv 10.1021/acsaem.0c02999
format Web Resource
fullrecord <record><control><sourceid>epfl_F1K</sourceid><recordid>TN_cdi_epfl_infoscience_oai_infoscience_epfl_ch_285490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_infoscience_epfl_ch_285490</sourcerecordid><originalsourceid>FETCH-epfl_infoscience_oai_infoscience_epfl_ch_2854903</originalsourceid><addsrcrecordid>eNqdi70KwjAURrM4iLo65wWsaf3BzFXRQREsruWS3tBgkluSKPj2FnFxdTrfge8wNs1Flosin4OKgC4TShRSyiE736CjwKsAPvYj8S12FE0y5DlpfsLUviw4R948HD9SYxrkui8uGOgZ7yYhv5KFwEu0No7ZQIONOPlyxNb7XVUeZthpWxuvKSqDXmFNYH78c1BtXWxWSykWf4dvu4xPkg</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>Vapor Transport Deposition of Methylammonium Iodide for Perovskite Solar Cells</title><source>Infoscience: EPF Lausanne</source><creator>Sahli, Florent ; Miaz, Nathanaël ; Salsi, Niccolò ; Bucher, Cédric ; Schafflützel, Aymeric ; Guesnay, Quentin ; Duchêne, Léo ; Niesen, Björn ; Ballif, Christophe ; Jeangros, Quentin</creator><creatorcontrib>Sahli, Florent ; Miaz, Nathanaël ; Salsi, Niccolò ; Bucher, Cédric ; Schafflützel, Aymeric ; Guesnay, Quentin ; Duchêne, Léo ; Niesen, Björn ; Ballif, Christophe ; Jeangros, Quentin</creatorcontrib><description>Vapor-based processes are promising options to deposit metal halide perovskite solar cells in an industrial environment due to their ability to deposit uniform layers over large areas in a controlled environment without resorting to the use of (possibly toxic) solvents. In addition, they yield conformal layers on rough substrates, an important aspect in view of producing perovskite/ crystalline silicon tandem solar cells featuring a textured silicon wafer for light management. While the inorganic precursors of the perovskite are well suited for thermal evaporation in high vacuum, the sublimation of the organic ones is more complex to control due to their high vapor pressure. To tackle this issue, we developed a vapor transport deposition chamber for organohalide deposition that physically dissociates the organic vapor evaporation zone from the deposition chamber. Once evaporated, organic vapors, here methylammonium iodide (MAI), are transported to the deposition chamber by a carrier gas through a showerhead, ensuring a spatially homogeneous conversion of PbI2 templates to the perovskite phase. The method enables the production of homogeneous perovskite layers on a textured 6 in. wafer. Furthermore, small-scale methylammonium lead iodide solar cells are also processed to validate the quality of the absorbers produced by this hybrid thermal evaporation/vapor transport deposition process.</description><identifier>DOI: 10.1021/acsaem.0c02999</identifier><language>eng</language><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27837</link.rule.ids><linktorsrc>$$Uhttp://infoscience.epfl.ch/record/285490$$EView_record_in_EPF_Lausanne$$FView_record_in_$$GEPF_Lausanne$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sahli, Florent</creatorcontrib><creatorcontrib>Miaz, Nathanaël</creatorcontrib><creatorcontrib>Salsi, Niccolò</creatorcontrib><creatorcontrib>Bucher, Cédric</creatorcontrib><creatorcontrib>Schafflützel, Aymeric</creatorcontrib><creatorcontrib>Guesnay, Quentin</creatorcontrib><creatorcontrib>Duchêne, Léo</creatorcontrib><creatorcontrib>Niesen, Björn</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><creatorcontrib>Jeangros, Quentin</creatorcontrib><title>Vapor Transport Deposition of Methylammonium Iodide for Perovskite Solar Cells</title><description>Vapor-based processes are promising options to deposit metal halide perovskite solar cells in an industrial environment due to their ability to deposit uniform layers over large areas in a controlled environment without resorting to the use of (possibly toxic) solvents. In addition, they yield conformal layers on rough substrates, an important aspect in view of producing perovskite/ crystalline silicon tandem solar cells featuring a textured silicon wafer for light management. While the inorganic precursors of the perovskite are well suited for thermal evaporation in high vacuum, the sublimation of the organic ones is more complex to control due to their high vapor pressure. To tackle this issue, we developed a vapor transport deposition chamber for organohalide deposition that physically dissociates the organic vapor evaporation zone from the deposition chamber. Once evaporated, organic vapors, here methylammonium iodide (MAI), are transported to the deposition chamber by a carrier gas through a showerhead, ensuring a spatially homogeneous conversion of PbI2 templates to the perovskite phase. The method enables the production of homogeneous perovskite layers on a textured 6 in. wafer. Furthermore, small-scale methylammonium lead iodide solar cells are also processed to validate the quality of the absorbers produced by this hybrid thermal evaporation/vapor transport deposition process.</description><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><recordtype>web_resource</recordtype><sourceid>F1K</sourceid><recordid>eNqdi70KwjAURrM4iLo65wWsaf3BzFXRQREsruWS3tBgkluSKPj2FnFxdTrfge8wNs1Flosin4OKgC4TShRSyiE736CjwKsAPvYj8S12FE0y5DlpfsLUviw4R948HD9SYxrkui8uGOgZ7yYhv5KFwEu0No7ZQIONOPlyxNb7XVUeZthpWxuvKSqDXmFNYH78c1BtXWxWSykWf4dvu4xPkg</recordid><creator>Sahli, Florent</creator><creator>Miaz, Nathanaël</creator><creator>Salsi, Niccolò</creator><creator>Bucher, Cédric</creator><creator>Schafflützel, Aymeric</creator><creator>Guesnay, Quentin</creator><creator>Duchêne, Léo</creator><creator>Niesen, Björn</creator><creator>Ballif, Christophe</creator><creator>Jeangros, Quentin</creator><scope>F1K</scope></search><sort><title>Vapor Transport Deposition of Methylammonium Iodide for Perovskite Solar Cells</title><author>Sahli, Florent ; Miaz, Nathanaël ; Salsi, Niccolò ; Bucher, Cédric ; Schafflützel, Aymeric ; Guesnay, Quentin ; Duchêne, Léo ; Niesen, Björn ; Ballif, Christophe ; Jeangros, Quentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epfl_infoscience_oai_infoscience_epfl_ch_2854903</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng</language><toplevel>online_resources</toplevel><creatorcontrib>Sahli, Florent</creatorcontrib><creatorcontrib>Miaz, Nathanaël</creatorcontrib><creatorcontrib>Salsi, Niccolò</creatorcontrib><creatorcontrib>Bucher, Cédric</creatorcontrib><creatorcontrib>Schafflützel, Aymeric</creatorcontrib><creatorcontrib>Guesnay, Quentin</creatorcontrib><creatorcontrib>Duchêne, Léo</creatorcontrib><creatorcontrib>Niesen, Björn</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><creatorcontrib>Jeangros, Quentin</creatorcontrib><collection>Infoscience: EPF Lausanne</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sahli, Florent</au><au>Miaz, Nathanaël</au><au>Salsi, Niccolò</au><au>Bucher, Cédric</au><au>Schafflützel, Aymeric</au><au>Guesnay, Quentin</au><au>Duchêne, Léo</au><au>Niesen, Björn</au><au>Ballif, Christophe</au><au>Jeangros, Quentin</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>Vapor Transport Deposition of Methylammonium Iodide for Perovskite Solar Cells</btitle><abstract>Vapor-based processes are promising options to deposit metal halide perovskite solar cells in an industrial environment due to their ability to deposit uniform layers over large areas in a controlled environment without resorting to the use of (possibly toxic) solvents. In addition, they yield conformal layers on rough substrates, an important aspect in view of producing perovskite/ crystalline silicon tandem solar cells featuring a textured silicon wafer for light management. While the inorganic precursors of the perovskite are well suited for thermal evaporation in high vacuum, the sublimation of the organic ones is more complex to control due to their high vapor pressure. To tackle this issue, we developed a vapor transport deposition chamber for organohalide deposition that physically dissociates the organic vapor evaporation zone from the deposition chamber. Once evaporated, organic vapors, here methylammonium iodide (MAI), are transported to the deposition chamber by a carrier gas through a showerhead, ensuring a spatially homogeneous conversion of PbI2 templates to the perovskite phase. The method enables the production of homogeneous perovskite layers on a textured 6 in. wafer. Furthermore, small-scale methylammonium lead iodide solar cells are also processed to validate the quality of the absorbers produced by this hybrid thermal evaporation/vapor transport deposition process.</abstract><doi>10.1021/acsaem.0c02999</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1021/acsaem.0c02999
ispartof
issn
language eng
recordid cdi_epfl_infoscience_oai_infoscience_epfl_ch_285490
source Infoscience: EPF Lausanne
title Vapor Transport Deposition of Methylammonium Iodide for Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epfl_F1K&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Vapor%20Transport%20Deposition%20of%20Methylammonium%20Iodide%20for%20Perovskite%20Solar%20Cells&rft.au=Sahli,%20Florent&rft_id=info:doi/10.1021/acsaem.0c02999&rft_dat=%3Cepfl_F1K%3Eoai_infoscience_epfl_ch_285490%3C/epfl_F1K%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true