An Attention Mechanism for Deep Q-Networks with Applications in Robotic Pushing
Humans effortlessly solve push tasks in everyday life but unlocking these capabilities remains a research challenge in robotics. Physical models are often inaccurate or unattainable. State-of-the-art data-driven approaches learn to compensate for these inaccuracies or get rid of the approximated phy...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Web Resource |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ewerton, Marco Calinon, Sylvain Odobez, Jean-Marc |
description | Humans effortlessly solve push tasks in everyday life but unlocking these capabilities remains a research challenge in robotics. Physical models are often inaccurate or unattainable. State-of-the-art data-driven approaches learn to compensate for these inaccuracies or get rid of the approximated physical models altogether. Nevertheless, data-driven approaches such as Deep Q-Networks (DQNs) get frequently stuck in local optima in large state-action spaces. We propose an attention mechanism for DQNs to improve their sampling efficiency and demonstrate in simulation experiments with a UR5 robot arm that such a mechanism helps the DQN learn faster and achieve higher performance in a push task involving objects with unknown dynamics. |
format | Web Resource |
fullrecord | <record><control><sourceid>epfl_F1K</sourceid><recordid>TN_cdi_epfl_infoscience_oai_infoscience_epfl_ch_285008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_infoscience_epfl_ch_285008</sourcerecordid><originalsourceid>FETCH-epfl_infoscience_oai_infoscience_epfl_ch_2850083</originalsourceid><addsrcrecordid>eNqdi7sKAjEQANNYiPoP-wMHh6Jce_jAxif2IYaNWYy74bJyvy-Kja3VMDAzNIeWoVVFVhKGHfromMoDgnSwQsxwqvaovXT3Aj1phDbnRN698wLEcJarKHk4Pkskvo3NILhUcPLlyCw268tyW2EOyRIHKZ6QPVpx9OOfwEc7beZ13cz-Hl9bP0lK</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>An Attention Mechanism for Deep Q-Networks with Applications in Robotic Pushing</title><source>Infoscience: EPF Lausanne</source><creator>Ewerton, Marco ; Calinon, Sylvain ; Odobez, Jean-Marc</creator><creatorcontrib>Ewerton, Marco ; Calinon, Sylvain ; Odobez, Jean-Marc</creatorcontrib><description>Humans effortlessly solve push tasks in everyday life but unlocking these capabilities remains a research challenge in robotics. Physical models are often inaccurate or unattainable. State-of-the-art data-driven approaches learn to compensate for these inaccuracies or get rid of the approximated physical models altogether. Nevertheless, data-driven approaches such as Deep Q-Networks (DQNs) get frequently stuck in local optima in large state-action spaces. We propose an attention mechanism for DQNs to improve their sampling efficiency and demonstrate in simulation experiments with a UR5 robot arm that such a mechanism helps the DQN learn faster and achieve higher performance in a push task involving objects with unknown dynamics.</description><language>eng</language><publisher>Idiap</publisher><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,780,27860</link.rule.ids><linktorsrc>$$Uhttp://infoscience.epfl.ch/record/285008$$EView_record_in_EPF_Lausanne$$FView_record_in_$$GEPF_Lausanne$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ewerton, Marco</creatorcontrib><creatorcontrib>Calinon, Sylvain</creatorcontrib><creatorcontrib>Odobez, Jean-Marc</creatorcontrib><title>An Attention Mechanism for Deep Q-Networks with Applications in Robotic Pushing</title><description>Humans effortlessly solve push tasks in everyday life but unlocking these capabilities remains a research challenge in robotics. Physical models are often inaccurate or unattainable. State-of-the-art data-driven approaches learn to compensate for these inaccuracies or get rid of the approximated physical models altogether. Nevertheless, data-driven approaches such as Deep Q-Networks (DQNs) get frequently stuck in local optima in large state-action spaces. We propose an attention mechanism for DQNs to improve their sampling efficiency and demonstrate in simulation experiments with a UR5 robot arm that such a mechanism helps the DQN learn faster and achieve higher performance in a push task involving objects with unknown dynamics.</description><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><recordtype>web_resource</recordtype><sourceid>F1K</sourceid><recordid>eNqdi7sKAjEQANNYiPoP-wMHh6Jce_jAxif2IYaNWYy74bJyvy-Kja3VMDAzNIeWoVVFVhKGHfromMoDgnSwQsxwqvaovXT3Aj1phDbnRN698wLEcJarKHk4Pkskvo3NILhUcPLlyCw268tyW2EOyRIHKZ6QPVpx9OOfwEc7beZ13cz-Hl9bP0lK</recordid><creator>Ewerton, Marco</creator><creator>Calinon, Sylvain</creator><creator>Odobez, Jean-Marc</creator><general>Idiap</general><scope>F1K</scope></search><sort><title>An Attention Mechanism for Deep Q-Networks with Applications in Robotic Pushing</title><author>Ewerton, Marco ; Calinon, Sylvain ; Odobez, Jean-Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epfl_infoscience_oai_infoscience_epfl_ch_2850083</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng</language><toplevel>online_resources</toplevel><creatorcontrib>Ewerton, Marco</creatorcontrib><creatorcontrib>Calinon, Sylvain</creatorcontrib><creatorcontrib>Odobez, Jean-Marc</creatorcontrib><collection>Infoscience: EPF Lausanne</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ewerton, Marco</au><au>Calinon, Sylvain</au><au>Odobez, Jean-Marc</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>An Attention Mechanism for Deep Q-Networks with Applications in Robotic Pushing</btitle><abstract>Humans effortlessly solve push tasks in everyday life but unlocking these capabilities remains a research challenge in robotics. Physical models are often inaccurate or unattainable. State-of-the-art data-driven approaches learn to compensate for these inaccuracies or get rid of the approximated physical models altogether. Nevertheless, data-driven approaches such as Deep Q-Networks (DQNs) get frequently stuck in local optima in large state-action spaces. We propose an attention mechanism for DQNs to improve their sampling efficiency and demonstrate in simulation experiments with a UR5 robot arm that such a mechanism helps the DQN learn faster and achieve higher performance in a push task involving objects with unknown dynamics.</abstract><pub>Idiap</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epfl_infoscience_oai_infoscience_epfl_ch_285008 |
source | Infoscience: EPF Lausanne |
title | An Attention Mechanism for Deep Q-Networks with Applications in Robotic Pushing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epfl_F1K&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=An%20Attention%20Mechanism%20for%20Deep%20Q-Networks%20with%20Applications%20in%20Robotic%20Pushing&rft.au=Ewerton,%20Marco&rft_id=info:doi/&rft_dat=%3Cepfl_F1K%3Eoai_infoscience_epfl_ch_285008%3C/epfl_F1K%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |