Lithium-Gold Reference Electrode for Potential Stability DuringIn SituElectron Microscopy Studies of Lithium-Ion Batteries
Electrochemical liquid-phase transmission electron microscopy (TEM) is showing excellent promise in fundamental studies of energy-related processes including lithium-ion battery (LIB) cycling. A key requirement to accurately interpret the measurements and acquire quantitative information is the impl...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Web Resource |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Hou, Jing Girod, Robin Nianias, Nikolaos Shen, Tzu-Hsien Fan, Jialiang Tileli, Vasiliki |
description | Electrochemical liquid-phase transmission electron microscopy (TEM) is showing excellent promise in fundamental studies of energy-related processes including lithium-ion battery (LIB) cycling. A key requirement to accurately interpret the measurements and acquire quantitative information is the implementation of a reliable reference electrode. Quasi-reference electrodes (QRE) remain commonly used due to microfabrication constraints of the electrochemical cell, however, they typically yield dramatic potential drifts making the electrochemical results inconclusive. Here, we present a method of producing a stable and readily interpretable lithium-gold alloy micro-reference electrode, which exhibits a reference potential of 0.1 V vs Li/Li+. We first examine the feasibility of electrochemically alloying a pristine gold electrode, patterned on a chip forin situTEM, using a benchtop setup, and investigate various sources to support the lithiation. We confirm the presence of the Li-Au alloy using chronopotentiometry (CP) and open circuit voltage (OCV) measurements, and by scanning electron microscopy (SEM), electron energy loss spectroscopy (EELS) and high-resolution (HR) TEM. Finally, we apply this methodologyin situand use LiFePO(4)as a model cathode material to demonstrate the merit of the Li-Au alloy reference electrode for obtaining reproducible cyclic voltammetry (CV) measurements on a liquid cell microelectrode system. |
doi_str_mv | 10.1149/1945-7111/ab9eea |
format | Web Resource |
fullrecord | <record><control><sourceid>epfl_F1K</sourceid><recordid>TN_cdi_epfl_infoscience_oai_infoscience_epfl_ch_278934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_infoscience_epfl_ch_278934</sourcerecordid><originalsourceid>FETCH-epfl_infoscience_oai_infoscience_epfl_ch_2789343</originalsourceid><addsrcrecordid>eNqdjjsPwjAMhLMwIGBn9B8oECiPrryRQEKUvQqpA5ZCglJ3gF9PQTCwMp1O9519QrRlryNlnHRlEg-jsZSyq04JoqqLx5b4QuU1WnmbwwENBnQaYWFRc_A5gvEB9p7RMSkLKasTWeI7zMtA7rxxkBKXH9zBjnTwhfa3e4WWOWEB3sD3yaYipooZQxU0Rc0oW2Drow0xWi6Os3WEN2Mzcqa6Q68xmVf049-AvmT98SQZxIO_i09wwl_c</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>Lithium-Gold Reference Electrode for Potential Stability DuringIn SituElectron Microscopy Studies of Lithium-Ion Batteries</title><source>Infoscience: EPF Lausanne</source><creator>Hou, Jing ; Girod, Robin ; Nianias, Nikolaos ; Shen, Tzu-Hsien ; Fan, Jialiang ; Tileli, Vasiliki</creator><creatorcontrib>Hou, Jing ; Girod, Robin ; Nianias, Nikolaos ; Shen, Tzu-Hsien ; Fan, Jialiang ; Tileli, Vasiliki</creatorcontrib><description>Electrochemical liquid-phase transmission electron microscopy (TEM) is showing excellent promise in fundamental studies of energy-related processes including lithium-ion battery (LIB) cycling. A key requirement to accurately interpret the measurements and acquire quantitative information is the implementation of a reliable reference electrode. Quasi-reference electrodes (QRE) remain commonly used due to microfabrication constraints of the electrochemical cell, however, they typically yield dramatic potential drifts making the electrochemical results inconclusive. Here, we present a method of producing a stable and readily interpretable lithium-gold alloy micro-reference electrode, which exhibits a reference potential of 0.1 V vs Li/Li+. We first examine the feasibility of electrochemically alloying a pristine gold electrode, patterned on a chip forin situTEM, using a benchtop setup, and investigate various sources to support the lithiation. We confirm the presence of the Li-Au alloy using chronopotentiometry (CP) and open circuit voltage (OCV) measurements, and by scanning electron microscopy (SEM), electron energy loss spectroscopy (EELS) and high-resolution (HR) TEM. Finally, we apply this methodologyin situand use LiFePO(4)as a model cathode material to demonstrate the merit of the Li-Au alloy reference electrode for obtaining reproducible cyclic voltammetry (CV) measurements on a liquid cell microelectrode system.</description><identifier>DOI: 10.1149/1945-7111/ab9eea</identifier><language>eng</language><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27839</link.rule.ids><linktorsrc>$$Uhttp://infoscience.epfl.ch/record/278934$$EView_record_in_EPF_Lausanne$$FView_record_in_$$GEPF_Lausanne$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Girod, Robin</creatorcontrib><creatorcontrib>Nianias, Nikolaos</creatorcontrib><creatorcontrib>Shen, Tzu-Hsien</creatorcontrib><creatorcontrib>Fan, Jialiang</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><title>Lithium-Gold Reference Electrode for Potential Stability DuringIn SituElectron Microscopy Studies of Lithium-Ion Batteries</title><description>Electrochemical liquid-phase transmission electron microscopy (TEM) is showing excellent promise in fundamental studies of energy-related processes including lithium-ion battery (LIB) cycling. A key requirement to accurately interpret the measurements and acquire quantitative information is the implementation of a reliable reference electrode. Quasi-reference electrodes (QRE) remain commonly used due to microfabrication constraints of the electrochemical cell, however, they typically yield dramatic potential drifts making the electrochemical results inconclusive. Here, we present a method of producing a stable and readily interpretable lithium-gold alloy micro-reference electrode, which exhibits a reference potential of 0.1 V vs Li/Li+. We first examine the feasibility of electrochemically alloying a pristine gold electrode, patterned on a chip forin situTEM, using a benchtop setup, and investigate various sources to support the lithiation. We confirm the presence of the Li-Au alloy using chronopotentiometry (CP) and open circuit voltage (OCV) measurements, and by scanning electron microscopy (SEM), electron energy loss spectroscopy (EELS) and high-resolution (HR) TEM. Finally, we apply this methodologyin situand use LiFePO(4)as a model cathode material to demonstrate the merit of the Li-Au alloy reference electrode for obtaining reproducible cyclic voltammetry (CV) measurements on a liquid cell microelectrode system.</description><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><recordtype>web_resource</recordtype><sourceid>F1K</sourceid><recordid>eNqdjjsPwjAMhLMwIGBn9B8oECiPrryRQEKUvQqpA5ZCglJ3gF9PQTCwMp1O9519QrRlryNlnHRlEg-jsZSyq04JoqqLx5b4QuU1WnmbwwENBnQaYWFRc_A5gvEB9p7RMSkLKasTWeI7zMtA7rxxkBKXH9zBjnTwhfa3e4WWOWEB3sD3yaYipooZQxU0Rc0oW2Drow0xWi6Os3WEN2Mzcqa6Q68xmVf049-AvmT98SQZxIO_i09wwl_c</recordid><creator>Hou, Jing</creator><creator>Girod, Robin</creator><creator>Nianias, Nikolaos</creator><creator>Shen, Tzu-Hsien</creator><creator>Fan, Jialiang</creator><creator>Tileli, Vasiliki</creator><scope>F1K</scope></search><sort><title>Lithium-Gold Reference Electrode for Potential Stability DuringIn SituElectron Microscopy Studies of Lithium-Ion Batteries</title><author>Hou, Jing ; Girod, Robin ; Nianias, Nikolaos ; Shen, Tzu-Hsien ; Fan, Jialiang ; Tileli, Vasiliki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epfl_infoscience_oai_infoscience_epfl_ch_2789343</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng</language><toplevel>online_resources</toplevel><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Girod, Robin</creatorcontrib><creatorcontrib>Nianias, Nikolaos</creatorcontrib><creatorcontrib>Shen, Tzu-Hsien</creatorcontrib><creatorcontrib>Fan, Jialiang</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><collection>Infoscience: EPF Lausanne</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, Jing</au><au>Girod, Robin</au><au>Nianias, Nikolaos</au><au>Shen, Tzu-Hsien</au><au>Fan, Jialiang</au><au>Tileli, Vasiliki</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>Lithium-Gold Reference Electrode for Potential Stability DuringIn SituElectron Microscopy Studies of Lithium-Ion Batteries</btitle><abstract>Electrochemical liquid-phase transmission electron microscopy (TEM) is showing excellent promise in fundamental studies of energy-related processes including lithium-ion battery (LIB) cycling. A key requirement to accurately interpret the measurements and acquire quantitative information is the implementation of a reliable reference electrode. Quasi-reference electrodes (QRE) remain commonly used due to microfabrication constraints of the electrochemical cell, however, they typically yield dramatic potential drifts making the electrochemical results inconclusive. Here, we present a method of producing a stable and readily interpretable lithium-gold alloy micro-reference electrode, which exhibits a reference potential of 0.1 V vs Li/Li+. We first examine the feasibility of electrochemically alloying a pristine gold electrode, patterned on a chip forin situTEM, using a benchtop setup, and investigate various sources to support the lithiation. We confirm the presence of the Li-Au alloy using chronopotentiometry (CP) and open circuit voltage (OCV) measurements, and by scanning electron microscopy (SEM), electron energy loss spectroscopy (EELS) and high-resolution (HR) TEM. Finally, we apply this methodologyin situand use LiFePO(4)as a model cathode material to demonstrate the merit of the Li-Au alloy reference electrode for obtaining reproducible cyclic voltammetry (CV) measurements on a liquid cell microelectrode system.</abstract><doi>10.1149/1945-7111/ab9eea</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.1149/1945-7111/ab9eea |
ispartof | |
issn | |
language | eng |
recordid | cdi_epfl_infoscience_oai_infoscience_epfl_ch_278934 |
source | Infoscience: EPF Lausanne |
title | Lithium-Gold Reference Electrode for Potential Stability DuringIn SituElectron Microscopy Studies of Lithium-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epfl_F1K&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Lithium-Gold%20Reference%20Electrode%20for%20Potential%20Stability%20DuringIn%20SituElectron%20Microscopy%20Studies%20of%20Lithium-Ion%20Batteries&rft.au=Hou,%20Jing&rft_id=info:doi/10.1149/1945-7111/ab9eea&rft_dat=%3Cepfl_F1K%3Eoai_infoscience_epfl_ch_278934%3C/epfl_F1K%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |