The numbers lead a dance. Mathematics of the Sestina

Sestinas are poems of 39 lines comprising six verses of six lines each, and a three line final verse or ‘envoi’. The structure of the sestina is built around word repetition rather than strict rhyme. Each verse uses the same set line ending words, but in a permuted order. The form of the permutation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Champneys, Alan, Hjorth, Poul, Man, Harry
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue
container_start_page 55
container_title
container_volume
creator Champneys, Alan
Hjorth, Poul
Man, Harry
description Sestinas are poems of 39 lines comprising six verses of six lines each, and a three line final verse or ‘envoi’. The structure of the sestina is built around word repetition rather than strict rhyme. Each verse uses the same set line ending words, but in a permuted order. The form of the permutation is highly specific, and is equivalent to iteration of the tent map. This paper considers for which number $N$ of verses, other than 6, can a sestina-like poem be formed. That is, which $N$ will the prescribed permutation lead to a poem of $N$ verses where no two verses have the same order of their end words. In so doing, a link is found between permutation groups, chaotic dynamics, and Cunningham numbers.
format Book Chapter
fullrecord <record><control><sourceid>ems</sourceid><recordid>TN_cdi_ems_books_10_4171_186_1_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_186_1_3</sourcerecordid><originalsourceid>FETCH-ems_books_10_4171_186_1_33</originalsourceid><addsrcrecordid>eNqNjcsKwjAQACMiKJp_2B9Qsk1M2rMoXjzZe9i2W1rtA9z6__bgwaOnYWBgFkpnIbXGBsx86nH545h6v1Za5GGMSYx3NjlulMsbhuHdF_wS6JgqIKhoKPkAN5oa7mlqS4GxhlngzjK1A-3UqqZOWH-5VXA556frnnuJxTg-JaKJDgPG-RoxWvtH8gHtHTN4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>The numbers lead a dance. Mathematics of the Sestina</title><source>European Mathematical Society Publishing House e-Books</source><creator>Champneys, Alan ; Hjorth, Poul ; Man, Harry</creator><contributor>Gesztesy, Fritz ; Seip, Kristian ; Lyubarskii, Yurii ; Hanche-Olsen, Harald ; Risebro, Nils Henrik ; Jakobsen, Espen</contributor><creatorcontrib>Champneys, Alan ; Hjorth, Poul ; Man, Harry ; Gesztesy, Fritz ; Seip, Kristian ; Lyubarskii, Yurii ; Hanche-Olsen, Harald ; Risebro, Nils Henrik ; Jakobsen, Espen</creatorcontrib><description>Sestinas are poems of 39 lines comprising six verses of six lines each, and a three line final verse or ‘envoi’. The structure of the sestina is built around word repetition rather than strict rhyme. Each verse uses the same set line ending words, but in a permuted order. The form of the permutation is highly specific, and is equivalent to iteration of the tent map. This paper considers for which number $N$ of verses, other than 6, can a sestina-like poem be formed. That is, which $N$ will the prescribed permutation lead to a poem of $N$ verses where no two verses have the same order of their end words. In so doing, a link is found between permutation groups, chaotic dynamics, and Cunningham numbers.</description><identifier>ISBN: 9783037191866</identifier><identifier>ISBN: 3037191864</identifier><identifier>EISBN: 9783037196861</identifier><identifier>EISBN: 3037196866</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Partial differential equations</subject><ispartof>Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, 2018, p.55-71</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>EMS Series of Congress Reports</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>779,780,784,793,23990</link.rule.ids></links><search><contributor>Gesztesy, Fritz</contributor><contributor>Seip, Kristian</contributor><contributor>Lyubarskii, Yurii</contributor><contributor>Hanche-Olsen, Harald</contributor><contributor>Risebro, Nils Henrik</contributor><contributor>Jakobsen, Espen</contributor><creatorcontrib>Champneys, Alan</creatorcontrib><creatorcontrib>Hjorth, Poul</creatorcontrib><creatorcontrib>Man, Harry</creatorcontrib><title>The numbers lead a dance. Mathematics of the Sestina</title><title>Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis</title><description>Sestinas are poems of 39 lines comprising six verses of six lines each, and a three line final verse or ‘envoi’. The structure of the sestina is built around word repetition rather than strict rhyme. Each verse uses the same set line ending words, but in a permuted order. The form of the permutation is highly specific, and is equivalent to iteration of the tent map. This paper considers for which number $N$ of verses, other than 6, can a sestina-like poem be formed. That is, which $N$ will the prescribed permutation lead to a poem of $N$ verses where no two verses have the same order of their end words. In so doing, a link is found between permutation groups, chaotic dynamics, and Cunningham numbers.</description><subject>Partial differential equations</subject><isbn>9783037191866</isbn><isbn>3037191864</isbn><isbn>9783037196861</isbn><isbn>3037196866</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2018</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqNjcsKwjAQACMiKJp_2B9Qsk1M2rMoXjzZe9i2W1rtA9z6__bgwaOnYWBgFkpnIbXGBsx86nH545h6v1Za5GGMSYx3NjlulMsbhuHdF_wS6JgqIKhoKPkAN5oa7mlqS4GxhlngzjK1A-3UqqZOWH-5VXA556frnnuJxTg-JaKJDgPG-RoxWvtH8gHtHTN4</recordid><startdate>20180531</startdate><enddate>20180531</enddate><creator>Champneys, Alan</creator><creator>Hjorth, Poul</creator><creator>Man, Harry</creator><general>European Mathematical Society Publishing House</general><scope/></search><sort><creationdate>20180531</creationdate><title>The numbers lead a dance. Mathematics of the Sestina</title><author>Champneys, Alan ; Hjorth, Poul ; Man, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ems_books_10_4171_186_1_33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Partial differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Champneys, Alan</creatorcontrib><creatorcontrib>Hjorth, Poul</creatorcontrib><creatorcontrib>Man, Harry</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Champneys, Alan</au><au>Hjorth, Poul</au><au>Man, Harry</au><au>Gesztesy, Fritz</au><au>Seip, Kristian</au><au>Lyubarskii, Yurii</au><au>Hanche-Olsen, Harald</au><au>Risebro, Nils Henrik</au><au>Jakobsen, Espen</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>The numbers lead a dance. Mathematics of the Sestina</atitle><btitle>Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis</btitle><seriestitle>EMS Series of Congress Reports</seriestitle><date>2018-05-31</date><risdate>2018</risdate><spage>55</spage><epage>71</epage><pages>55-71</pages><isbn>9783037191866</isbn><isbn>3037191864</isbn><eisbn>9783037196861</eisbn><eisbn>3037196866</eisbn><abstract>Sestinas are poems of 39 lines comprising six verses of six lines each, and a three line final verse or ‘envoi’. The structure of the sestina is built around word repetition rather than strict rhyme. Each verse uses the same set line ending words, but in a permuted order. The form of the permutation is highly specific, and is equivalent to iteration of the tent map. This paper considers for which number $N$ of verses, other than 6, can a sestina-like poem be formed. That is, which $N$ will the prescribed permutation lead to a poem of $N$ verses where no two verses have the same order of their end words. In so doing, a link is found between permutation groups, chaotic dynamics, and Cunningham numbers.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub></addata></record>
fulltext fulltext
identifier ISBN: 9783037191866
ispartof Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, 2018, p.55-71
issn
language eng
recordid cdi_ems_books_10_4171_186_1_3
source European Mathematical Society Publishing House e-Books
subjects Partial differential equations
title The numbers lead a dance. Mathematics of the Sestina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=The%20numbers%20lead%20a%20dance.%20Mathematics%20of%20the%20Sestina&rft.btitle=Non-Linear%20Partial%20Differential%20Equations,%20Mathematical%20Physics,%20and%20Stochastic%20Analysis&rft.au=Champneys,%20Alan&rft.date=2018-05-31&rft.spage=55&rft.epage=71&rft.pages=55-71&rft.isbn=9783037191866&rft.isbn_list=3037191864&rft_id=info:doi/&rft_dat=%3Cems%3E10_4171_186_1_3%3C/ems%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783037196861&rft.eisbn_list=3037196866&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true