Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect
Purpose The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motio...
Gespeichert in:
Veröffentlicht in: | World journal of engineering 2019-04, Vol.16 (1), p.51-63 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | World journal of engineering |
container_volume | 16 |
creator | Ghadikolaei, S.S Hosseinzadeh, Kh Ganji, D.D |
description | Purpose
The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model).
Design/methodology/approach
The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams.
Findings
As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated.
Originality/value
Eyring–Powell nanofluid and MHD have significant influence on flow profile. |
doi_str_mv | 10.1108/WJE-06-2018-0204 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_WJE-06-2018-0204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207951232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-2f0daf74a795703ca6a1d831513b2b243c470763d7068455d68fcfc17deec7243</originalsourceid><addsrcrecordid>eNptkUFrWzEMx81YYaHtfUfDzl5l-71n7zhKtrW0tIeWHo1ry4mLY3d-TkO-RT_yHLLLYEIgkP5_CX4i5DOHr5yDvni6XjKYmACuGQgYPpCFGPnINGjxkSy4As1GoYdP5HyeX6DHMAmu5IK8X-U3nFtc2RZLpj1v7SpjK3S5rzGv2H3ZYUo021xC2kZPQyo7Wt6w0phdihk9nVvF5tZdTt2-t3wf7mJb01wOAltpW2Pd2ESr9fF4yWZPr8s2IV1j73QrhoCunZGTYNOM53_rKXn8sXy4_MVu7n5eXX6_YU6OujERwNugBqu-jQqks5PlXks-cvksnsUg3aBATdIrmPQwjn7SwQXHlUd0qs9PyZfj3tdafm87AvNStjX3k0YI6Fu5kKKr4KhytcxzxWBea9zYujcczAG96egNTOaA3hzQd8vF0YIbrDb5_zn-eZb8A_k4hyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207951232</pqid></control><display><type>article</type><title>Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect</title><source>Emerald Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Ghadikolaei, S.S ; Hosseinzadeh, Kh ; Ganji, D.D</creator><creatorcontrib>Ghadikolaei, S.S ; Hosseinzadeh, Kh ; Ganji, D.D</creatorcontrib><description>Purpose
The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model).
Design/methodology/approach
The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams.
Findings
As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated.
Originality/value
Eyring–Powell nanofluid and MHD have significant influence on flow profile.</description><identifier>ISSN: 1708-5284</identifier><identifier>EISSN: 2515-8082</identifier><identifier>DOI: 10.1108/WJE-06-2018-0204</identifier><language>eng</language><publisher>Brentwood: Emerald Publishing Limited</publisher><subject>Brownian motion ; Chemical reactions ; Coefficient of friction ; Computational fluid dynamics ; Convection heating ; Cylinders ; Fluid flow ; Heat generation ; Heat transfer ; High temperature effects ; Lorentz force ; Magnetic fields ; Magnetohydrodynamics ; Mathematical models ; Nanofluids ; Nanoparticles ; Non-Newtonian fluids ; Numerical methods ; Ohmic dissipation ; Organic chemistry ; Parameters ; Resistance heating ; Reynolds number ; Skin friction ; Stretching ; Studies ; Thermal radiation ; Thermophoresis ; Velocity ; Velocity distribution ; Viscosity</subject><ispartof>World journal of engineering, 2019-04, Vol.16 (1), p.51-63</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-2f0daf74a795703ca6a1d831513b2b243c470763d7068455d68fcfc17deec7243</citedby><cites>FETCH-LOGICAL-c358t-2f0daf74a795703ca6a1d831513b2b243c470763d7068455d68fcfc17deec7243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/WJE-06-2018-0204/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>315,781,785,968,11640,21700,27929,27930,52694,53249</link.rule.ids></links><search><creatorcontrib>Ghadikolaei, S.S</creatorcontrib><creatorcontrib>Hosseinzadeh, Kh</creatorcontrib><creatorcontrib>Ganji, D.D</creatorcontrib><title>Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect</title><title>World journal of engineering</title><description>Purpose
The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model).
Design/methodology/approach
The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams.
Findings
As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated.
Originality/value
Eyring–Powell nanofluid and MHD have significant influence on flow profile.</description><subject>Brownian motion</subject><subject>Chemical reactions</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Convection heating</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>High temperature effects</subject><subject>Lorentz force</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Non-Newtonian fluids</subject><subject>Numerical methods</subject><subject>Ohmic dissipation</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Resistance heating</subject><subject>Reynolds number</subject><subject>Skin friction</subject><subject>Stretching</subject><subject>Studies</subject><subject>Thermal radiation</subject><subject>Thermophoresis</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><issn>1708-5284</issn><issn>2515-8082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkUFrWzEMx81YYaHtfUfDzl5l-71n7zhKtrW0tIeWHo1ry4mLY3d-TkO-RT_yHLLLYEIgkP5_CX4i5DOHr5yDvni6XjKYmACuGQgYPpCFGPnINGjxkSy4As1GoYdP5HyeX6DHMAmu5IK8X-U3nFtc2RZLpj1v7SpjK3S5rzGv2H3ZYUo021xC2kZPQyo7Wt6w0phdihk9nVvF5tZdTt2-t3wf7mJb01wOAltpW2Pd2ESr9fF4yWZPr8s2IV1j73QrhoCunZGTYNOM53_rKXn8sXy4_MVu7n5eXX6_YU6OujERwNugBqu-jQqks5PlXks-cvksnsUg3aBATdIrmPQwjn7SwQXHlUd0qs9PyZfj3tdafm87AvNStjX3k0YI6Fu5kKKr4KhytcxzxWBea9zYujcczAG96egNTOaA3hzQd8vF0YIbrDb5_zn-eZb8A_k4hyg</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Ghadikolaei, S.S</creator><creator>Hosseinzadeh, Kh</creator><creator>Ganji, D.D</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190412</creationdate><title>Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect</title><author>Ghadikolaei, S.S ; Hosseinzadeh, Kh ; Ganji, D.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-2f0daf74a795703ca6a1d831513b2b243c470763d7068455d68fcfc17deec7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brownian motion</topic><topic>Chemical reactions</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Convection heating</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>High temperature effects</topic><topic>Lorentz force</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Non-Newtonian fluids</topic><topic>Numerical methods</topic><topic>Ohmic dissipation</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Resistance heating</topic><topic>Reynolds number</topic><topic>Skin friction</topic><topic>Stretching</topic><topic>Studies</topic><topic>Thermal radiation</topic><topic>Thermophoresis</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghadikolaei, S.S</creatorcontrib><creatorcontrib>Hosseinzadeh, Kh</creatorcontrib><creatorcontrib>Ganji, D.D</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>World journal of engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghadikolaei, S.S</au><au>Hosseinzadeh, Kh</au><au>Ganji, D.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect</atitle><jtitle>World journal of engineering</jtitle><date>2019-04-12</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>51</spage><epage>63</epage><pages>51-63</pages><issn>1708-5284</issn><eissn>2515-8082</eissn><abstract>Purpose
The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model).
Design/methodology/approach
The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams.
Findings
As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated.
Originality/value
Eyring–Powell nanofluid and MHD have significant influence on flow profile.</abstract><cop>Brentwood</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/WJE-06-2018-0204</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1708-5284 |
ispartof | World journal of engineering, 2019-04, Vol.16 (1), p.51-63 |
issn | 1708-5284 2515-8082 |
language | eng |
recordid | cdi_emerald_primary_10_1108_WJE-06-2018-0204 |
source | Emerald Journals; Standard: Emerald eJournal Premier Collection |
subjects | Brownian motion Chemical reactions Coefficient of friction Computational fluid dynamics Convection heating Cylinders Fluid flow Heat generation Heat transfer High temperature effects Lorentz force Magnetic fields Magnetohydrodynamics Mathematical models Nanofluids Nanoparticles Non-Newtonian fluids Numerical methods Ohmic dissipation Organic chemistry Parameters Resistance heating Reynolds number Skin friction Stretching Studies Thermal radiation Thermophoresis Velocity Velocity distribution Viscosity |
title | Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20Magneto%20Eyring-Powell%20nanofluid%20flow%20over%20inclined%20stretching%20cylinder%20with%20nolinear%20thermal%20radiation%20and%20Joule%20heating%20effect&rft.jtitle=World%20journal%20of%20engineering&rft.au=Ghadikolaei,%20S.S&rft.date=2019-04-12&rft.volume=16&rft.issue=1&rft.spage=51&rft.epage=63&rft.pages=51-63&rft.issn=1708-5284&rft.eissn=2515-8082&rft_id=info:doi/10.1108/WJE-06-2018-0204&rft_dat=%3Cproquest_emera%3E2207951232%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207951232&rft_id=info:pmid/&rfr_iscdi=true |