Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect

Purpose The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of engineering 2019-04, Vol.16 (1), p.51-63
Hauptverfasser: Ghadikolaei, S.S, Hosseinzadeh, Kh, Ganji, D.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 51
container_title World journal of engineering
container_volume 16
creator Ghadikolaei, S.S
Hosseinzadeh, Kh
Ganji, D.D
description Purpose The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model). Design/methodology/approach The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams. Findings As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated. Originality/value Eyring–Powell nanofluid and MHD have significant influence on flow profile.
doi_str_mv 10.1108/WJE-06-2018-0204
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_WJE-06-2018-0204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207951232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-2f0daf74a795703ca6a1d831513b2b243c470763d7068455d68fcfc17deec7243</originalsourceid><addsrcrecordid>eNptkUFrWzEMx81YYaHtfUfDzl5l-71n7zhKtrW0tIeWHo1ry4mLY3d-TkO-RT_yHLLLYEIgkP5_CX4i5DOHr5yDvni6XjKYmACuGQgYPpCFGPnINGjxkSy4As1GoYdP5HyeX6DHMAmu5IK8X-U3nFtc2RZLpj1v7SpjK3S5rzGv2H3ZYUo021xC2kZPQyo7Wt6w0phdihk9nVvF5tZdTt2-t3wf7mJb01wOAltpW2Pd2ESr9fF4yWZPr8s2IV1j73QrhoCunZGTYNOM53_rKXn8sXy4_MVu7n5eXX6_YU6OujERwNugBqu-jQqks5PlXks-cvksnsUg3aBATdIrmPQwjn7SwQXHlUd0qs9PyZfj3tdafm87AvNStjX3k0YI6Fu5kKKr4KhytcxzxWBea9zYujcczAG96egNTOaA3hzQd8vF0YIbrDb5_zn-eZb8A_k4hyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207951232</pqid></control><display><type>article</type><title>Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect</title><source>Emerald Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Ghadikolaei, S.S ; Hosseinzadeh, Kh ; Ganji, D.D</creator><creatorcontrib>Ghadikolaei, S.S ; Hosseinzadeh, Kh ; Ganji, D.D</creatorcontrib><description>Purpose The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model). Design/methodology/approach The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams. Findings As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated. Originality/value Eyring–Powell nanofluid and MHD have significant influence on flow profile.</description><identifier>ISSN: 1708-5284</identifier><identifier>EISSN: 2515-8082</identifier><identifier>DOI: 10.1108/WJE-06-2018-0204</identifier><language>eng</language><publisher>Brentwood: Emerald Publishing Limited</publisher><subject>Brownian motion ; Chemical reactions ; Coefficient of friction ; Computational fluid dynamics ; Convection heating ; Cylinders ; Fluid flow ; Heat generation ; Heat transfer ; High temperature effects ; Lorentz force ; Magnetic fields ; Magnetohydrodynamics ; Mathematical models ; Nanofluids ; Nanoparticles ; Non-Newtonian fluids ; Numerical methods ; Ohmic dissipation ; Organic chemistry ; Parameters ; Resistance heating ; Reynolds number ; Skin friction ; Stretching ; Studies ; Thermal radiation ; Thermophoresis ; Velocity ; Velocity distribution ; Viscosity</subject><ispartof>World journal of engineering, 2019-04, Vol.16 (1), p.51-63</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-2f0daf74a795703ca6a1d831513b2b243c470763d7068455d68fcfc17deec7243</citedby><cites>FETCH-LOGICAL-c358t-2f0daf74a795703ca6a1d831513b2b243c470763d7068455d68fcfc17deec7243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/WJE-06-2018-0204/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>315,781,785,968,11640,21700,27929,27930,52694,53249</link.rule.ids></links><search><creatorcontrib>Ghadikolaei, S.S</creatorcontrib><creatorcontrib>Hosseinzadeh, Kh</creatorcontrib><creatorcontrib>Ganji, D.D</creatorcontrib><title>Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect</title><title>World journal of engineering</title><description>Purpose The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model). Design/methodology/approach The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams. Findings As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated. Originality/value Eyring–Powell nanofluid and MHD have significant influence on flow profile.</description><subject>Brownian motion</subject><subject>Chemical reactions</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Convection heating</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>High temperature effects</subject><subject>Lorentz force</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Non-Newtonian fluids</subject><subject>Numerical methods</subject><subject>Ohmic dissipation</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Resistance heating</subject><subject>Reynolds number</subject><subject>Skin friction</subject><subject>Stretching</subject><subject>Studies</subject><subject>Thermal radiation</subject><subject>Thermophoresis</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><issn>1708-5284</issn><issn>2515-8082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkUFrWzEMx81YYaHtfUfDzl5l-71n7zhKtrW0tIeWHo1ry4mLY3d-TkO-RT_yHLLLYEIgkP5_CX4i5DOHr5yDvni6XjKYmACuGQgYPpCFGPnINGjxkSy4As1GoYdP5HyeX6DHMAmu5IK8X-U3nFtc2RZLpj1v7SpjK3S5rzGv2H3ZYUo021xC2kZPQyo7Wt6w0phdihk9nVvF5tZdTt2-t3wf7mJb01wOAltpW2Pd2ESr9fF4yWZPr8s2IV1j73QrhoCunZGTYNOM53_rKXn8sXy4_MVu7n5eXX6_YU6OujERwNugBqu-jQqks5PlXks-cvksnsUg3aBATdIrmPQwjn7SwQXHlUd0qs9PyZfj3tdafm87AvNStjX3k0YI6Fu5kKKr4KhytcxzxWBea9zYujcczAG96egNTOaA3hzQd8vF0YIbrDb5_zn-eZb8A_k4hyg</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Ghadikolaei, S.S</creator><creator>Hosseinzadeh, Kh</creator><creator>Ganji, D.D</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190412</creationdate><title>Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect</title><author>Ghadikolaei, S.S ; Hosseinzadeh, Kh ; Ganji, D.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-2f0daf74a795703ca6a1d831513b2b243c470763d7068455d68fcfc17deec7243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brownian motion</topic><topic>Chemical reactions</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Convection heating</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>High temperature effects</topic><topic>Lorentz force</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Non-Newtonian fluids</topic><topic>Numerical methods</topic><topic>Ohmic dissipation</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Resistance heating</topic><topic>Reynolds number</topic><topic>Skin friction</topic><topic>Stretching</topic><topic>Studies</topic><topic>Thermal radiation</topic><topic>Thermophoresis</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghadikolaei, S.S</creatorcontrib><creatorcontrib>Hosseinzadeh, Kh</creatorcontrib><creatorcontrib>Ganji, D.D</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>World journal of engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghadikolaei, S.S</au><au>Hosseinzadeh, Kh</au><au>Ganji, D.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect</atitle><jtitle>World journal of engineering</jtitle><date>2019-04-12</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>51</spage><epage>63</epage><pages>51-63</pages><issn>1708-5284</issn><eissn>2515-8082</eissn><abstract>Purpose The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model). Design/methodology/approach The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams. Findings As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated. Originality/value Eyring–Powell nanofluid and MHD have significant influence on flow profile.</abstract><cop>Brentwood</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/WJE-06-2018-0204</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1708-5284
ispartof World journal of engineering, 2019-04, Vol.16 (1), p.51-63
issn 1708-5284
2515-8082
language eng
recordid cdi_emerald_primary_10_1108_WJE-06-2018-0204
source Emerald Journals; Standard: Emerald eJournal Premier Collection
subjects Brownian motion
Chemical reactions
Coefficient of friction
Computational fluid dynamics
Convection heating
Cylinders
Fluid flow
Heat generation
Heat transfer
High temperature effects
Lorentz force
Magnetic fields
Magnetohydrodynamics
Mathematical models
Nanofluids
Nanoparticles
Non-Newtonian fluids
Numerical methods
Ohmic dissipation
Organic chemistry
Parameters
Resistance heating
Reynolds number
Skin friction
Stretching
Studies
Thermal radiation
Thermophoresis
Velocity
Velocity distribution
Viscosity
title Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20Magneto%20Eyring-Powell%20nanofluid%20flow%20over%20inclined%20stretching%20cylinder%20with%20nolinear%20thermal%20radiation%20and%20Joule%20heating%20effect&rft.jtitle=World%20journal%20of%20engineering&rft.au=Ghadikolaei,%20S.S&rft.date=2019-04-12&rft.volume=16&rft.issue=1&rft.spage=51&rft.epage=63&rft.pages=51-63&rft.issn=1708-5284&rft.eissn=2515-8082&rft_id=info:doi/10.1108/WJE-06-2018-0204&rft_dat=%3Cproquest_emera%3E2207951232%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207951232&rft_id=info:pmid/&rfr_iscdi=true