Dynamics of micropolar-Walters B fluids under the influence of thermal radiation and Soret–Dufour mechanisms

Purpose The purpose of this study is to investigate the Dynamics of micropolar – water B Fluids flow simultaneously under the influence of thermal radiation and Soret–Dufour Mechanisms. Design/methodology/approach The thermal radiation contribution, the chemical change and heat generation take fluid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of engineering 2024-06, Vol.21 (4), p.754-766
Hauptverfasser: Ayegbusi, Florence Dami, Doungmo Goufo, Emile Franc, Tchepmo, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 4
container_start_page 754
container_title World journal of engineering
container_volume 21
creator Ayegbusi, Florence Dami
Doungmo Goufo, Emile Franc
Tchepmo, Patrick
description Purpose The purpose of this study is to investigate the Dynamics of micropolar – water B Fluids flow simultaneously under the influence of thermal radiation and Soret–Dufour Mechanisms. Design/methodology/approach The thermal radiation contribution, the chemical change and heat generation take fluidity into account. The flow equations are used to produce a series of dimensionless equations with appropriate nondimensional quantities. By using the spectral homotopy analysis method (SHAM), simplified dimensionless equations have been quantitatively solved. With Chebyshev pseudospectral technique, SHAM integrates the approach of the well-known method of homotopical analysis to the set of altered equations. In terms of velocity, concentration and temperature profiles, the impacts of Prandtl number, chemical reaction and thermal radiation are studied. All findings are visually shown and all physical values are calculated and tabulated. Findings The results indicate that an increase in the variable viscosity leads to speed and temperature increases. Based on the transport nature of micropolar Walters B fluids, the thermal conductivity has great impact on the Prandtl number and decrease the velocity and temperature. The current research was very well supported by prior literature works. The results in this paper are anticipated to be helpful for biotechnology, food processing and boiling. It is used primarily in refrigerating systems, tensile heating to large-scale heating and oil pipeline reduction. Originality/value All results are presented graphically and all physical quantities are computed and tabulated.
doi_str_mv 10.1108/WJE-02-2023-0044
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_WJE-02-2023-0044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069398600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-fecf6bd7d9c4dc7edd2a8a67f45405b02c677132acfe3abbcb9dfbaf78322cae3</originalsourceid><addsrcrecordid>eNptUclOwzAQtRBIVKV3jpY4m3pJ4_QIbdlUiQOgHq2JFzVV4hQ7OfTGP_CHfAmOygEk5vJGo_dmeYPQJaPXjNFiunlaEcoJp1wQSrPsBI2YpAWZ8SI7_ZWfo0mMO5oiyzmTYoT88uChqXTErcMJQ7tvawhkA3VnQ8S32NV9ZSLuvbEBd1uLK59K1ms7SFIhNFDjAKaCrmo9Bm_wSxts9_Xxuexd2wfcWL0FX8UmXqAzB3W0kx8co7e71evigayf7x8XN2uiBWMdcVa7vDTSzHVmtLTGcCggly6bZXRWUq5zKZngoJ0VUJa6nBtXgpOF4FyDFWN0dey7D-17b2OndmkRn0YqQfO5mBc5pYlFj6x0dozBOrUPVQPhoBhVg7EqGasoV4OxajA2SaZHiW1sgNr8p_jzCvENcEl9Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069398600</pqid></control><display><type>article</type><title>Dynamics of micropolar-Walters B fluids under the influence of thermal radiation and Soret–Dufour mechanisms</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Ayegbusi, Florence Dami ; Doungmo Goufo, Emile Franc ; Tchepmo, Patrick</creator><creatorcontrib>Ayegbusi, Florence Dami ; Doungmo Goufo, Emile Franc ; Tchepmo, Patrick</creatorcontrib><description>Purpose The purpose of this study is to investigate the Dynamics of micropolar – water B Fluids flow simultaneously under the influence of thermal radiation and Soret–Dufour Mechanisms. Design/methodology/approach The thermal radiation contribution, the chemical change and heat generation take fluidity into account. The flow equations are used to produce a series of dimensionless equations with appropriate nondimensional quantities. By using the spectral homotopy analysis method (SHAM), simplified dimensionless equations have been quantitatively solved. With Chebyshev pseudospectral technique, SHAM integrates the approach of the well-known method of homotopical analysis to the set of altered equations. In terms of velocity, concentration and temperature profiles, the impacts of Prandtl number, chemical reaction and thermal radiation are studied. All findings are visually shown and all physical values are calculated and tabulated. Findings The results indicate that an increase in the variable viscosity leads to speed and temperature increases. Based on the transport nature of micropolar Walters B fluids, the thermal conductivity has great impact on the Prandtl number and decrease the velocity and temperature. The current research was very well supported by prior literature works. The results in this paper are anticipated to be helpful for biotechnology, food processing and boiling. It is used primarily in refrigerating systems, tensile heating to large-scale heating and oil pipeline reduction. Originality/value All results are presented graphically and all physical quantities are computed and tabulated.</description><identifier>ISSN: 1708-5284</identifier><identifier>EISSN: 1708-5284</identifier><identifier>DOI: 10.1108/WJE-02-2023-0044</identifier><language>eng</language><publisher>Brentwood: Emerald Publishing Limited</publisher><subject>Chebyshev approximation ; Chemical reactions ; Flow equations ; Fluid flow ; Fluids ; Food processing ; Heat generation ; Heat transfer ; Heating ; Homotopy theory ; Nanoparticles ; Partial differential equations ; Petroleum pipelines ; Prandtl number ; Radiation ; Reynolds number ; Temperature ; Temperature profiles ; Thermal conductivity ; Thermal radiation ; Velocity ; Viscosity</subject><ispartof>World journal of engineering, 2024-06, Vol.21 (4), p.754-766</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-fecf6bd7d9c4dc7edd2a8a67f45405b02c677132acfe3abbcb9dfbaf78322cae3</citedby><cites>FETCH-LOGICAL-c311t-fecf6bd7d9c4dc7edd2a8a67f45405b02c677132acfe3abbcb9dfbaf78322cae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/WJE-02-2023-0044/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,21674,27901,27902,53219</link.rule.ids></links><search><creatorcontrib>Ayegbusi, Florence Dami</creatorcontrib><creatorcontrib>Doungmo Goufo, Emile Franc</creatorcontrib><creatorcontrib>Tchepmo, Patrick</creatorcontrib><title>Dynamics of micropolar-Walters B fluids under the influence of thermal radiation and Soret–Dufour mechanisms</title><title>World journal of engineering</title><description>Purpose The purpose of this study is to investigate the Dynamics of micropolar – water B Fluids flow simultaneously under the influence of thermal radiation and Soret–Dufour Mechanisms. Design/methodology/approach The thermal radiation contribution, the chemical change and heat generation take fluidity into account. The flow equations are used to produce a series of dimensionless equations with appropriate nondimensional quantities. By using the spectral homotopy analysis method (SHAM), simplified dimensionless equations have been quantitatively solved. With Chebyshev pseudospectral technique, SHAM integrates the approach of the well-known method of homotopical analysis to the set of altered equations. In terms of velocity, concentration and temperature profiles, the impacts of Prandtl number, chemical reaction and thermal radiation are studied. All findings are visually shown and all physical values are calculated and tabulated. Findings The results indicate that an increase in the variable viscosity leads to speed and temperature increases. Based on the transport nature of micropolar Walters B fluids, the thermal conductivity has great impact on the Prandtl number and decrease the velocity and temperature. The current research was very well supported by prior literature works. The results in this paper are anticipated to be helpful for biotechnology, food processing and boiling. It is used primarily in refrigerating systems, tensile heating to large-scale heating and oil pipeline reduction. Originality/value All results are presented graphically and all physical quantities are computed and tabulated.</description><subject>Chebyshev approximation</subject><subject>Chemical reactions</subject><subject>Flow equations</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Food processing</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Homotopy theory</subject><subject>Nanoparticles</subject><subject>Partial differential equations</subject><subject>Petroleum pipelines</subject><subject>Prandtl number</subject><subject>Radiation</subject><subject>Reynolds number</subject><subject>Temperature</subject><subject>Temperature profiles</subject><subject>Thermal conductivity</subject><subject>Thermal radiation</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>1708-5284</issn><issn>1708-5284</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptUclOwzAQtRBIVKV3jpY4m3pJ4_QIbdlUiQOgHq2JFzVV4hQ7OfTGP_CHfAmOygEk5vJGo_dmeYPQJaPXjNFiunlaEcoJp1wQSrPsBI2YpAWZ8SI7_ZWfo0mMO5oiyzmTYoT88uChqXTErcMJQ7tvawhkA3VnQ8S32NV9ZSLuvbEBd1uLK59K1ms7SFIhNFDjAKaCrmo9Bm_wSxts9_Xxuexd2wfcWL0FX8UmXqAzB3W0kx8co7e71evigayf7x8XN2uiBWMdcVa7vDTSzHVmtLTGcCggly6bZXRWUq5zKZngoJ0VUJa6nBtXgpOF4FyDFWN0dey7D-17b2OndmkRn0YqQfO5mBc5pYlFj6x0dozBOrUPVQPhoBhVg7EqGasoV4OxajA2SaZHiW1sgNr8p_jzCvENcEl9Bg</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Ayegbusi, Florence Dami</creator><creator>Doungmo Goufo, Emile Franc</creator><creator>Tchepmo, Patrick</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240620</creationdate><title>Dynamics of micropolar-Walters B fluids under the influence of thermal radiation and Soret–Dufour mechanisms</title><author>Ayegbusi, Florence Dami ; Doungmo Goufo, Emile Franc ; Tchepmo, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-fecf6bd7d9c4dc7edd2a8a67f45405b02c677132acfe3abbcb9dfbaf78322cae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chebyshev approximation</topic><topic>Chemical reactions</topic><topic>Flow equations</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Food processing</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Homotopy theory</topic><topic>Nanoparticles</topic><topic>Partial differential equations</topic><topic>Petroleum pipelines</topic><topic>Prandtl number</topic><topic>Radiation</topic><topic>Reynolds number</topic><topic>Temperature</topic><topic>Temperature profiles</topic><topic>Thermal conductivity</topic><topic>Thermal radiation</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayegbusi, Florence Dami</creatorcontrib><creatorcontrib>Doungmo Goufo, Emile Franc</creatorcontrib><creatorcontrib>Tchepmo, Patrick</creatorcontrib><collection>CrossRef</collection><jtitle>World journal of engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayegbusi, Florence Dami</au><au>Doungmo Goufo, Emile Franc</au><au>Tchepmo, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of micropolar-Walters B fluids under the influence of thermal radiation and Soret–Dufour mechanisms</atitle><jtitle>World journal of engineering</jtitle><date>2024-06-20</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>754</spage><epage>766</epage><pages>754-766</pages><issn>1708-5284</issn><eissn>1708-5284</eissn><abstract>Purpose The purpose of this study is to investigate the Dynamics of micropolar – water B Fluids flow simultaneously under the influence of thermal radiation and Soret–Dufour Mechanisms. Design/methodology/approach The thermal radiation contribution, the chemical change and heat generation take fluidity into account. The flow equations are used to produce a series of dimensionless equations with appropriate nondimensional quantities. By using the spectral homotopy analysis method (SHAM), simplified dimensionless equations have been quantitatively solved. With Chebyshev pseudospectral technique, SHAM integrates the approach of the well-known method of homotopical analysis to the set of altered equations. In terms of velocity, concentration and temperature profiles, the impacts of Prandtl number, chemical reaction and thermal radiation are studied. All findings are visually shown and all physical values are calculated and tabulated. Findings The results indicate that an increase in the variable viscosity leads to speed and temperature increases. Based on the transport nature of micropolar Walters B fluids, the thermal conductivity has great impact on the Prandtl number and decrease the velocity and temperature. The current research was very well supported by prior literature works. The results in this paper are anticipated to be helpful for biotechnology, food processing and boiling. It is used primarily in refrigerating systems, tensile heating to large-scale heating and oil pipeline reduction. Originality/value All results are presented graphically and all physical quantities are computed and tabulated.</abstract><cop>Brentwood</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/WJE-02-2023-0044</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1708-5284
ispartof World journal of engineering, 2024-06, Vol.21 (4), p.754-766
issn 1708-5284
1708-5284
language eng
recordid cdi_emerald_primary_10_1108_WJE-02-2023-0044
source Standard: Emerald eJournal Premier Collection
subjects Chebyshev approximation
Chemical reactions
Flow equations
Fluid flow
Fluids
Food processing
Heat generation
Heat transfer
Heating
Homotopy theory
Nanoparticles
Partial differential equations
Petroleum pipelines
Prandtl number
Radiation
Reynolds number
Temperature
Temperature profiles
Thermal conductivity
Thermal radiation
Velocity
Viscosity
title Dynamics of micropolar-Walters B fluids under the influence of thermal radiation and Soret–Dufour mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A15%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20micropolar-Walters%20B%20fluids%20under%20the%20influence%20of%20thermal%20radiation%20and%20Soret%E2%80%93Dufour%20mechanisms&rft.jtitle=World%20journal%20of%20engineering&rft.au=Ayegbusi,%20Florence%20Dami&rft.date=2024-06-20&rft.volume=21&rft.issue=4&rft.spage=754&rft.epage=766&rft.pages=754-766&rft.issn=1708-5284&rft.eissn=1708-5284&rft_id=info:doi/10.1108/WJE-02-2023-0044&rft_dat=%3Cproquest_emera%3E3069398600%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069398600&rft_id=info:pmid/&rfr_iscdi=true