A linear computationally efficient Kalman filter for robust attitude estimation from horizon measurements and GNSS observations

Purpose For fixed-wing micro air vehicles, the attitude determination is usually produced by the horizon/Global Navigation Satellite System (GNSS) in which the GNSS provides yaw estimates, while roll and pitch are computed using horizon sensors. However, the attitude determination has been independe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensor review 2020-05, Vol.40 (2), p.153-165
Hauptverfasser: Liu, Changhua, Qian, Jide, Wang, Zuocai, Wu, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose For fixed-wing micro air vehicles, the attitude determination is usually produced by the horizon/Global Navigation Satellite System (GNSS) in which the GNSS provides yaw estimates, while roll and pitch are computed using horizon sensors. However, the attitude determination has been independently obtained from the two sensors, which will result in insufficient usage of data. Also, when implementing attitude determination algorithms on embedded platforms, the computational resources are highly restricted. This paper aims to propose a computationally efficient linear Kalman filter to solve the problem. Design/methodology/approach The observation model is in the form of a least-square optimization composed by GNSS and horizontal measurements. Analytical quaternion solution along with its covariance is derived to significantly speed up on-chip computation. Findings The reconstructed attitude from Horizon/GNSS is integrated with quaternion kinematic equation from gyroscopic data that builds up a fast linear Kalman filter. The proposed filter does not involve coupling effects presented in existing works and will be more robust encountering bad GNSS measurements. Originality/value Electronic systems are designed on a real-world fixed-wing plane. Experiments are conducted on this platform that show comparisons on the accuracy and computation execution time of the proposed method and existing representatives. The results indicate that the proposed algorithm is accurate and much faster computation speed in studied scenarios.
ISSN:0260-2288
1758-6828
DOI:10.1108/SR-07-2019-0186