Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures

Purpose The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure. Design/methodology/approach A Taguchi L9 ort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid prototyping journal 2024-05, Vol.30 (5), p.885-903
Hauptverfasser: Wambua, Job Maveke, Mwema, Fredrick Madaraka, Akinlabi, Stephen, Birkett, Martin, Xu, Ben, Woo, Wai Lok, Taverne, Mike, Ho, Ying-Lung Daniel, Akinlabi, Esther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 903
container_issue 5
container_start_page 885
container_title Rapid prototyping journal
container_volume 30
creator Wambua, Job Maveke
Mwema, Fredrick Madaraka
Akinlabi, Stephen
Birkett, Martin
Xu, Ben
Woo, Wai Lok
Taverne, Mike
Ho, Ying-Lung Daniel
Akinlabi, Esther
description Purpose The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure. Design/methodology/approach A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures. Findings The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells. Practical implications The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials. Originality/value To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.
doi_str_mv 10.1108/RPJ-11-2023-0415
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_RPJ-11-2023-0415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055868512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-e5f15a7c3216f194190ef6ab9000e00cd59814684c77a1c93f0a7f2d6dd61d753</originalsourceid><addsrcrecordid>eNptkctKBTEMhgdR8Lp3WXBdTWamc1mKeEVQRNdDTqfVHuZm0wF9DN_YDseFgouSkPx_Er4myTHCKSJUZ0-PdxJRppBmEnJUW8keZkrJVOXF9q98N9lnXgNgmivYS74epuB6xxTcOIjRism7IbjhVUzkqTfBeF7KdmbTCuu6WBuCsLTyTm9MNLRiHhx9OOqEHvvJG-alYcl1szdRQN0nOxZ29PHNXk5jXCI4kJf8RlOczMHPOkQ1HyY7ljo2Rz_xIHm5uny-uJH3D9e3F-f3UqdFHqRRFhWVOkuxsFjnWIOxBa1qADAAulV1hXlR5bosCXWdWaDSpm3RtgW2pcoOkpPN3MmP77Ph0KzjafFUbjJQqioqhWlUwUal_cjsjW0ioJ78Z4PQLOCbCD4mzQK-WcBHy9nGYnrjqWv_c_z5quwbkSyH6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055868512</pqid></control><display><type>article</type><title>Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Wambua, Job Maveke ; Mwema, Fredrick Madaraka ; Akinlabi, Stephen ; Birkett, Martin ; Xu, Ben ; Woo, Wai Lok ; Taverne, Mike ; Ho, Ying-Lung Daniel ; Akinlabi, Esther</creator><creatorcontrib>Wambua, Job Maveke ; Mwema, Fredrick Madaraka ; Akinlabi, Stephen ; Birkett, Martin ; Xu, Ben ; Woo, Wai Lok ; Taverne, Mike ; Ho, Ying-Lung Daniel ; Akinlabi, Esther</creatorcontrib><description>Purpose The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure. Design/methodology/approach A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures. Findings The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells. Practical implications The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials. Originality/value To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.</description><identifier>ISSN: 1355-2546</identifier><identifier>EISSN: 1355-2546</identifier><identifier>EISSN: 1758-7670</identifier><identifier>DOI: 10.1108/RPJ-11-2023-0415</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>3-D printers ; Accuracy ; Compression tests ; Compressive strength ; Densification ; Design of experiments ; Dimensional stability ; Empirical analysis ; Failure analysis ; Failure mechanisms ; Fused deposition modeling ; Manufacturing ; Mechanical analysis ; Mechanical properties ; Metamaterials ; Optimization ; Orthogonal arrays ; Parameters ; Poisson's ratio ; Polylactic acid ; Printing ; Rapid prototyping ; Software ; Stress-strain curves ; Unit cell ; Variance analysis ; Yield strength ; Yield stress</subject><ispartof>Rapid prototyping journal, 2024-05, Vol.30 (5), p.885-903</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-e5f15a7c3216f194190ef6ab9000e00cd59814684c77a1c93f0a7f2d6dd61d753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/RPJ-11-2023-0415/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,21674,27901,27902,53219</link.rule.ids></links><search><creatorcontrib>Wambua, Job Maveke</creatorcontrib><creatorcontrib>Mwema, Fredrick Madaraka</creatorcontrib><creatorcontrib>Akinlabi, Stephen</creatorcontrib><creatorcontrib>Birkett, Martin</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Woo, Wai Lok</creatorcontrib><creatorcontrib>Taverne, Mike</creatorcontrib><creatorcontrib>Ho, Ying-Lung Daniel</creatorcontrib><creatorcontrib>Akinlabi, Esther</creatorcontrib><title>Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures</title><title>Rapid prototyping journal</title><description>Purpose The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure. Design/methodology/approach A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures. Findings The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells. Practical implications The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials. Originality/value To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.</description><subject>3-D printers</subject><subject>Accuracy</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Densification</subject><subject>Design of experiments</subject><subject>Dimensional stability</subject><subject>Empirical analysis</subject><subject>Failure analysis</subject><subject>Failure mechanisms</subject><subject>Fused deposition modeling</subject><subject>Manufacturing</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Metamaterials</subject><subject>Optimization</subject><subject>Orthogonal arrays</subject><subject>Parameters</subject><subject>Poisson's ratio</subject><subject>Polylactic acid</subject><subject>Printing</subject><subject>Rapid prototyping</subject><subject>Software</subject><subject>Stress-strain curves</subject><subject>Unit cell</subject><subject>Variance analysis</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1355-2546</issn><issn>1355-2546</issn><issn>1758-7670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkctKBTEMhgdR8Lp3WXBdTWamc1mKeEVQRNdDTqfVHuZm0wF9DN_YDseFgouSkPx_Er4myTHCKSJUZ0-PdxJRppBmEnJUW8keZkrJVOXF9q98N9lnXgNgmivYS74epuB6xxTcOIjRism7IbjhVUzkqTfBeF7KdmbTCuu6WBuCsLTyTm9MNLRiHhx9OOqEHvvJG-alYcl1szdRQN0nOxZ29PHNXk5jXCI4kJf8RlOczMHPOkQ1HyY7ljo2Rz_xIHm5uny-uJH3D9e3F-f3UqdFHqRRFhWVOkuxsFjnWIOxBa1qADAAulV1hXlR5bosCXWdWaDSpm3RtgW2pcoOkpPN3MmP77Ph0KzjafFUbjJQqioqhWlUwUal_cjsjW0ioJ78Z4PQLOCbCD4mzQK-WcBHy9nGYnrjqWv_c_z5quwbkSyH6A</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Wambua, Job Maveke</creator><creator>Mwema, Fredrick Madaraka</creator><creator>Akinlabi, Stephen</creator><creator>Birkett, Martin</creator><creator>Xu, Ben</creator><creator>Woo, Wai Lok</creator><creator>Taverne, Mike</creator><creator>Ho, Ying-Lung Daniel</creator><creator>Akinlabi, Esther</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20240517</creationdate><title>Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures</title><author>Wambua, Job Maveke ; Mwema, Fredrick Madaraka ; Akinlabi, Stephen ; Birkett, Martin ; Xu, Ben ; Woo, Wai Lok ; Taverne, Mike ; Ho, Ying-Lung Daniel ; Akinlabi, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-e5f15a7c3216f194190ef6ab9000e00cd59814684c77a1c93f0a7f2d6dd61d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Accuracy</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Densification</topic><topic>Design of experiments</topic><topic>Dimensional stability</topic><topic>Empirical analysis</topic><topic>Failure analysis</topic><topic>Failure mechanisms</topic><topic>Fused deposition modeling</topic><topic>Manufacturing</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Metamaterials</topic><topic>Optimization</topic><topic>Orthogonal arrays</topic><topic>Parameters</topic><topic>Poisson's ratio</topic><topic>Polylactic acid</topic><topic>Printing</topic><topic>Rapid prototyping</topic><topic>Software</topic><topic>Stress-strain curves</topic><topic>Unit cell</topic><topic>Variance analysis</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wambua, Job Maveke</creatorcontrib><creatorcontrib>Mwema, Fredrick Madaraka</creatorcontrib><creatorcontrib>Akinlabi, Stephen</creatorcontrib><creatorcontrib>Birkett, Martin</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Woo, Wai Lok</creatorcontrib><creatorcontrib>Taverne, Mike</creatorcontrib><creatorcontrib>Ho, Ying-Lung Daniel</creatorcontrib><creatorcontrib>Akinlabi, Esther</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Rapid prototyping journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wambua, Job Maveke</au><au>Mwema, Fredrick Madaraka</au><au>Akinlabi, Stephen</au><au>Birkett, Martin</au><au>Xu, Ben</au><au>Woo, Wai Lok</au><au>Taverne, Mike</au><au>Ho, Ying-Lung Daniel</au><au>Akinlabi, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures</atitle><jtitle>Rapid prototyping journal</jtitle><date>2024-05-17</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>885</spage><epage>903</epage><pages>885-903</pages><issn>1355-2546</issn><eissn>1355-2546</eissn><eissn>1758-7670</eissn><abstract>Purpose The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure. Design/methodology/approach A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures. Findings The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells. Practical implications The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials. Originality/value To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/RPJ-11-2023-0415</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1355-2546
ispartof Rapid prototyping journal, 2024-05, Vol.30 (5), p.885-903
issn 1355-2546
1355-2546
1758-7670
language eng
recordid cdi_emerald_primary_10_1108_RPJ-11-2023-0415
source Standard: Emerald eJournal Premier Collection
subjects 3-D printers
Accuracy
Compression tests
Compressive strength
Densification
Design of experiments
Dimensional stability
Empirical analysis
Failure analysis
Failure mechanisms
Fused deposition modeling
Manufacturing
Mechanical analysis
Mechanical properties
Metamaterials
Optimization
Orthogonal arrays
Parameters
Poisson's ratio
Polylactic acid
Printing
Rapid prototyping
Software
Stress-strain curves
Unit cell
Variance analysis
Yield strength
Yield stress
title Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20of%20printing%20parameters%20of%20fused%20filament%20fabrication%20and%20uniaxial%20compression%20failure%20analysis%20for%20four-point%20star-shaped%20structures&rft.jtitle=Rapid%20prototyping%20journal&rft.au=Wambua,%20Job%20Maveke&rft.date=2024-05-17&rft.volume=30&rft.issue=5&rft.spage=885&rft.epage=903&rft.pages=885-903&rft.issn=1355-2546&rft.eissn=1355-2546&rft_id=info:doi/10.1108/RPJ-11-2023-0415&rft_dat=%3Cproquest_emera%3E3055868512%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055868512&rft_id=info:pmid/&rfr_iscdi=true