Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures
Purpose The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure. Design/methodology/approach A Taguchi L9 ort...
Gespeichert in:
Veröffentlicht in: | Rapid prototyping journal 2024-05, Vol.30 (5), p.885-903 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 903 |
---|---|
container_issue | 5 |
container_start_page | 885 |
container_title | Rapid prototyping journal |
container_volume | 30 |
creator | Wambua, Job Maveke Mwema, Fredrick Madaraka Akinlabi, Stephen Birkett, Martin Xu, Ben Woo, Wai Lok Taverne, Mike Ho, Ying-Lung Daniel Akinlabi, Esther |
description | Purpose
The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure.
Design/methodology/approach
A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures.
Findings
The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells.
Practical implications
The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials.
Originality/value
To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented. |
doi_str_mv | 10.1108/RPJ-11-2023-0415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_RPJ-11-2023-0415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055868512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-e5f15a7c3216f194190ef6ab9000e00cd59814684c77a1c93f0a7f2d6dd61d753</originalsourceid><addsrcrecordid>eNptkctKBTEMhgdR8Lp3WXBdTWamc1mKeEVQRNdDTqfVHuZm0wF9DN_YDseFgouSkPx_Er4myTHCKSJUZ0-PdxJRppBmEnJUW8keZkrJVOXF9q98N9lnXgNgmivYS74epuB6xxTcOIjRism7IbjhVUzkqTfBeF7KdmbTCuu6WBuCsLTyTm9MNLRiHhx9OOqEHvvJG-alYcl1szdRQN0nOxZ29PHNXk5jXCI4kJf8RlOczMHPOkQ1HyY7ljo2Rz_xIHm5uny-uJH3D9e3F-f3UqdFHqRRFhWVOkuxsFjnWIOxBa1qADAAulV1hXlR5bosCXWdWaDSpm3RtgW2pcoOkpPN3MmP77Ph0KzjafFUbjJQqioqhWlUwUal_cjsjW0ioJ78Z4PQLOCbCD4mzQK-WcBHy9nGYnrjqWv_c_z5quwbkSyH6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055868512</pqid></control><display><type>article</type><title>Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Wambua, Job Maveke ; Mwema, Fredrick Madaraka ; Akinlabi, Stephen ; Birkett, Martin ; Xu, Ben ; Woo, Wai Lok ; Taverne, Mike ; Ho, Ying-Lung Daniel ; Akinlabi, Esther</creator><creatorcontrib>Wambua, Job Maveke ; Mwema, Fredrick Madaraka ; Akinlabi, Stephen ; Birkett, Martin ; Xu, Ben ; Woo, Wai Lok ; Taverne, Mike ; Ho, Ying-Lung Daniel ; Akinlabi, Esther</creatorcontrib><description>Purpose
The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure.
Design/methodology/approach
A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures.
Findings
The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells.
Practical implications
The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials.
Originality/value
To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.</description><identifier>ISSN: 1355-2546</identifier><identifier>EISSN: 1355-2546</identifier><identifier>EISSN: 1758-7670</identifier><identifier>DOI: 10.1108/RPJ-11-2023-0415</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>3-D printers ; Accuracy ; Compression tests ; Compressive strength ; Densification ; Design of experiments ; Dimensional stability ; Empirical analysis ; Failure analysis ; Failure mechanisms ; Fused deposition modeling ; Manufacturing ; Mechanical analysis ; Mechanical properties ; Metamaterials ; Optimization ; Orthogonal arrays ; Parameters ; Poisson's ratio ; Polylactic acid ; Printing ; Rapid prototyping ; Software ; Stress-strain curves ; Unit cell ; Variance analysis ; Yield strength ; Yield stress</subject><ispartof>Rapid prototyping journal, 2024-05, Vol.30 (5), p.885-903</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-e5f15a7c3216f194190ef6ab9000e00cd59814684c77a1c93f0a7f2d6dd61d753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/RPJ-11-2023-0415/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,21674,27901,27902,53219</link.rule.ids></links><search><creatorcontrib>Wambua, Job Maveke</creatorcontrib><creatorcontrib>Mwema, Fredrick Madaraka</creatorcontrib><creatorcontrib>Akinlabi, Stephen</creatorcontrib><creatorcontrib>Birkett, Martin</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Woo, Wai Lok</creatorcontrib><creatorcontrib>Taverne, Mike</creatorcontrib><creatorcontrib>Ho, Ying-Lung Daniel</creatorcontrib><creatorcontrib>Akinlabi, Esther</creatorcontrib><title>Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures</title><title>Rapid prototyping journal</title><description>Purpose
The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure.
Design/methodology/approach
A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures.
Findings
The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells.
Practical implications
The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials.
Originality/value
To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.</description><subject>3-D printers</subject><subject>Accuracy</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Densification</subject><subject>Design of experiments</subject><subject>Dimensional stability</subject><subject>Empirical analysis</subject><subject>Failure analysis</subject><subject>Failure mechanisms</subject><subject>Fused deposition modeling</subject><subject>Manufacturing</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Metamaterials</subject><subject>Optimization</subject><subject>Orthogonal arrays</subject><subject>Parameters</subject><subject>Poisson's ratio</subject><subject>Polylactic acid</subject><subject>Printing</subject><subject>Rapid prototyping</subject><subject>Software</subject><subject>Stress-strain curves</subject><subject>Unit cell</subject><subject>Variance analysis</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1355-2546</issn><issn>1355-2546</issn><issn>1758-7670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkctKBTEMhgdR8Lp3WXBdTWamc1mKeEVQRNdDTqfVHuZm0wF9DN_YDseFgouSkPx_Er4myTHCKSJUZ0-PdxJRppBmEnJUW8keZkrJVOXF9q98N9lnXgNgmivYS74epuB6xxTcOIjRism7IbjhVUzkqTfBeF7KdmbTCuu6WBuCsLTyTm9MNLRiHhx9OOqEHvvJG-alYcl1szdRQN0nOxZ29PHNXk5jXCI4kJf8RlOczMHPOkQ1HyY7ljo2Rz_xIHm5uny-uJH3D9e3F-f3UqdFHqRRFhWVOkuxsFjnWIOxBa1qADAAulV1hXlR5bosCXWdWaDSpm3RtgW2pcoOkpPN3MmP77Ph0KzjafFUbjJQqioqhWlUwUal_cjsjW0ioJ78Z4PQLOCbCD4mzQK-WcBHy9nGYnrjqWv_c_z5quwbkSyH6A</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Wambua, Job Maveke</creator><creator>Mwema, Fredrick Madaraka</creator><creator>Akinlabi, Stephen</creator><creator>Birkett, Martin</creator><creator>Xu, Ben</creator><creator>Woo, Wai Lok</creator><creator>Taverne, Mike</creator><creator>Ho, Ying-Lung Daniel</creator><creator>Akinlabi, Esther</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20240517</creationdate><title>Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures</title><author>Wambua, Job Maveke ; Mwema, Fredrick Madaraka ; Akinlabi, Stephen ; Birkett, Martin ; Xu, Ben ; Woo, Wai Lok ; Taverne, Mike ; Ho, Ying-Lung Daniel ; Akinlabi, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-e5f15a7c3216f194190ef6ab9000e00cd59814684c77a1c93f0a7f2d6dd61d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Accuracy</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Densification</topic><topic>Design of experiments</topic><topic>Dimensional stability</topic><topic>Empirical analysis</topic><topic>Failure analysis</topic><topic>Failure mechanisms</topic><topic>Fused deposition modeling</topic><topic>Manufacturing</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Metamaterials</topic><topic>Optimization</topic><topic>Orthogonal arrays</topic><topic>Parameters</topic><topic>Poisson's ratio</topic><topic>Polylactic acid</topic><topic>Printing</topic><topic>Rapid prototyping</topic><topic>Software</topic><topic>Stress-strain curves</topic><topic>Unit cell</topic><topic>Variance analysis</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wambua, Job Maveke</creatorcontrib><creatorcontrib>Mwema, Fredrick Madaraka</creatorcontrib><creatorcontrib>Akinlabi, Stephen</creatorcontrib><creatorcontrib>Birkett, Martin</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Woo, Wai Lok</creatorcontrib><creatorcontrib>Taverne, Mike</creatorcontrib><creatorcontrib>Ho, Ying-Lung Daniel</creatorcontrib><creatorcontrib>Akinlabi, Esther</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Rapid prototyping journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wambua, Job Maveke</au><au>Mwema, Fredrick Madaraka</au><au>Akinlabi, Stephen</au><au>Birkett, Martin</au><au>Xu, Ben</au><au>Woo, Wai Lok</au><au>Taverne, Mike</au><au>Ho, Ying-Lung Daniel</au><au>Akinlabi, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures</atitle><jtitle>Rapid prototyping journal</jtitle><date>2024-05-17</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>885</spage><epage>903</epage><pages>885-903</pages><issn>1355-2546</issn><eissn>1355-2546</eissn><eissn>1758-7670</eissn><abstract>Purpose
The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure.
Design/methodology/approach
A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures.
Findings
The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells.
Practical implications
The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials.
Originality/value
To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/RPJ-11-2023-0415</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-2546 |
ispartof | Rapid prototyping journal, 2024-05, Vol.30 (5), p.885-903 |
issn | 1355-2546 1355-2546 1758-7670 |
language | eng |
recordid | cdi_emerald_primary_10_1108_RPJ-11-2023-0415 |
source | Standard: Emerald eJournal Premier Collection |
subjects | 3-D printers Accuracy Compression tests Compressive strength Densification Design of experiments Dimensional stability Empirical analysis Failure analysis Failure mechanisms Fused deposition modeling Manufacturing Mechanical analysis Mechanical properties Metamaterials Optimization Orthogonal arrays Parameters Poisson's ratio Polylactic acid Printing Rapid prototyping Software Stress-strain curves Unit cell Variance analysis Yield strength Yield stress |
title | Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20of%20printing%20parameters%20of%20fused%20filament%20fabrication%20and%20uniaxial%20compression%20failure%20analysis%20for%20four-point%20star-shaped%20structures&rft.jtitle=Rapid%20prototyping%20journal&rft.au=Wambua,%20Job%20Maveke&rft.date=2024-05-17&rft.volume=30&rft.issue=5&rft.spage=885&rft.epage=903&rft.pages=885-903&rft.issn=1355-2546&rft.eissn=1355-2546&rft_id=info:doi/10.1108/RPJ-11-2023-0415&rft_dat=%3Cproquest_emera%3E3055868512%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055868512&rft_id=info:pmid/&rfr_iscdi=true |