Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM

PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inheren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multidiscipline modeling in materials and structures 2024-10, Vol.20 (6), p.973-994
Hauptverfasser: Sohail, Muhammad, Rafique, Esha, Abodayeh, Kamaleldin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 994
container_issue 6
container_start_page 973
container_title Multidiscipline modeling in materials and structures
container_volume 20
creator Sohail, Muhammad
Rafique, Esha
Abodayeh, Kamaleldin
description PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.Design/methodology/approachFollowing the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.FindingsRemarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.Originality/valueAvailable studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.
doi_str_mv 10.1108/MMMS-04-2024-0106
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_MMMS-04-2024-0106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119845731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-b9d35d60ac0e131d634bd46c41b8921a830b27e3d451bee82b4e6a87d301e72d3</originalsourceid><addsrcrecordid>eNptkUFu2zAQRYWgAeImPUB3BLpWyxFpSV66QRsHsJFFEmRJjMSxzYAiVZIKonP0AjlLTxa5DgIU6Gr-4v2_eJNln4F_BeD1t81mc5tzmRe8kDkHXp5kM5hXIi8BxIf3zOdn2ccYHzmXIMtqlv3-7genMYzM4kiBoUM7RhOZd6zDnaPk96MOXo8OO9MybWI0PSbzROzBWGuwixPq0PmtHYxmPcbE_NPfqT8v9Nx7Ry4ZtHZkMQVK7Z4mygc_RBb3RIk1IyO3w51xO3azWm4ustMt2kif3u55dv_zx93lKl_fXF1fLtd5C4sy5c1Ci7kuObacQIAuhWy0LFsJTb0oAGvBm6IioeUcGqK6aCSVWFdacKCq0OI8-3Lc7YP_NVBM6tEPYRIQlQBY1HJyBhMFR6oNPsZAW9UH003GFHB1cK8O7hWX6uBeHdxPHX7sUEcBrf5v5Z93iVeK2Ypj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119845731</pqid></control><display><type>article</type><title>Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Sohail, Muhammad ; Rafique, Esha ; Abodayeh, Kamaleldin</creator><creatorcontrib>Sohail, Muhammad ; Rafique, Esha ; Abodayeh, Kamaleldin</creatorcontrib><description>PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.Design/methodology/approachFollowing the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.FindingsRemarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.Originality/valueAvailable studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.</description><identifier>ISSN: 1573-6105</identifier><identifier>EISSN: 1573-6113</identifier><identifier>DOI: 10.1108/MMMS-04-2024-0106</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Boundary layers ; Brownian motion ; Chemical reactions ; Copper ; Dissipation ; Engineering ; Fluid dynamics ; Friction ; Graphical representations ; Heat conductivity ; Heat exchangers ; Heat transfer ; Investigations ; Magnetic fields ; Magnetic properties ; Microorganisms ; Nanofluids ; Nanoparticles ; Non Newtonian flow ; Non-Newtonian fluids ; Physical properties ; Porous media ; Qualitative analysis ; Slip velocity ; Temperature dependence ; Thermal conductivity ; Thermal energy ; Titanium ; Velocity</subject><ispartof>Multidiscipline modeling in materials and structures, 2024-10, Vol.20 (6), p.973-994</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-b9d35d60ac0e131d634bd46c41b8921a830b27e3d451bee82b4e6a87d301e72d3</cites><orcidid>0000-0003-0735-6520 ; 0000-0002-1490-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/MMMS-04-2024-0106/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,21674,27901,27902,53219</link.rule.ids></links><search><creatorcontrib>Sohail, Muhammad</creatorcontrib><creatorcontrib>Rafique, Esha</creatorcontrib><creatorcontrib>Abodayeh, Kamaleldin</creatorcontrib><title>Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM</title><title>Multidiscipline modeling in materials and structures</title><description>PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.Design/methodology/approachFollowing the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.FindingsRemarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.Originality/valueAvailable studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.</description><subject>Boundary layers</subject><subject>Brownian motion</subject><subject>Chemical reactions</subject><subject>Copper</subject><subject>Dissipation</subject><subject>Engineering</subject><subject>Fluid dynamics</subject><subject>Friction</subject><subject>Graphical representations</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Microorganisms</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Non Newtonian flow</subject><subject>Non-Newtonian fluids</subject><subject>Physical properties</subject><subject>Porous media</subject><subject>Qualitative analysis</subject><subject>Slip velocity</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Titanium</subject><subject>Velocity</subject><issn>1573-6105</issn><issn>1573-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkUFu2zAQRYWgAeImPUB3BLpWyxFpSV66QRsHsJFFEmRJjMSxzYAiVZIKonP0AjlLTxa5DgIU6Gr-4v2_eJNln4F_BeD1t81mc5tzmRe8kDkHXp5kM5hXIi8BxIf3zOdn2ccYHzmXIMtqlv3-7genMYzM4kiBoUM7RhOZd6zDnaPk96MOXo8OO9MybWI0PSbzROzBWGuwixPq0PmtHYxmPcbE_NPfqT8v9Nx7Ry4ZtHZkMQVK7Z4mygc_RBb3RIk1IyO3w51xO3azWm4ustMt2kif3u55dv_zx93lKl_fXF1fLtd5C4sy5c1Ci7kuObacQIAuhWy0LFsJTb0oAGvBm6IioeUcGqK6aCSVWFdacKCq0OI8-3Lc7YP_NVBM6tEPYRIQlQBY1HJyBhMFR6oNPsZAW9UH003GFHB1cK8O7hWX6uBeHdxPHX7sUEcBrf5v5Z93iVeK2Ypj</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Sohail, Muhammad</creator><creator>Rafique, Esha</creator><creator>Abodayeh, Kamaleldin</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0735-6520</orcidid><orcidid>https://orcid.org/0000-0002-1490-0339</orcidid></search><sort><creationdate>20241028</creationdate><title>Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM</title><author>Sohail, Muhammad ; Rafique, Esha ; Abodayeh, Kamaleldin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-b9d35d60ac0e131d634bd46c41b8921a830b27e3d451bee82b4e6a87d301e72d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary layers</topic><topic>Brownian motion</topic><topic>Chemical reactions</topic><topic>Copper</topic><topic>Dissipation</topic><topic>Engineering</topic><topic>Fluid dynamics</topic><topic>Friction</topic><topic>Graphical representations</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Microorganisms</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Non Newtonian flow</topic><topic>Non-Newtonian fluids</topic><topic>Physical properties</topic><topic>Porous media</topic><topic>Qualitative analysis</topic><topic>Slip velocity</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Titanium</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohail, Muhammad</creatorcontrib><creatorcontrib>Rafique, Esha</creatorcontrib><creatorcontrib>Abodayeh, Kamaleldin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Multidiscipline modeling in materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohail, Muhammad</au><au>Rafique, Esha</au><au>Abodayeh, Kamaleldin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM</atitle><jtitle>Multidiscipline modeling in materials and structures</jtitle><date>2024-10-28</date><risdate>2024</risdate><volume>20</volume><issue>6</issue><spage>973</spage><epage>994</epage><pages>973-994</pages><issn>1573-6105</issn><eissn>1573-6113</eissn><abstract>PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.Design/methodology/approachFollowing the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.FindingsRemarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.Originality/valueAvailable studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/MMMS-04-2024-0106</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0735-6520</orcidid><orcidid>https://orcid.org/0000-0002-1490-0339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-6105
ispartof Multidiscipline modeling in materials and structures, 2024-10, Vol.20 (6), p.973-994
issn 1573-6105
1573-6113
language eng
recordid cdi_emerald_primary_10_1108_MMMS-04-2024-0106
source Standard: Emerald eJournal Premier Collection
subjects Boundary layers
Brownian motion
Chemical reactions
Copper
Dissipation
Engineering
Fluid dynamics
Friction
Graphical representations
Heat conductivity
Heat exchangers
Heat transfer
Investigations
Magnetic fields
Magnetic properties
Microorganisms
Nanofluids
Nanoparticles
Non Newtonian flow
Non-Newtonian fluids
Physical properties
Porous media
Qualitative analysis
Slip velocity
Temperature dependence
Thermal conductivity
Thermal energy
Titanium
Velocity
title Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20layer%20analysis%20on%20magnetohydrodynamic%20dissipative%20Williamson%20nanofluid%20past%20over%20an%C2%A0exponentially%20stretched%20porous%20sheet%20by%20engaging%20OHAM&rft.jtitle=Multidiscipline%20modeling%20in%20materials%20and%20structures&rft.au=Sohail,%20Muhammad&rft.date=2024-10-28&rft.volume=20&rft.issue=6&rft.spage=973&rft.epage=994&rft.pages=973-994&rft.issn=1573-6105&rft.eissn=1573-6113&rft_id=info:doi/10.1108/MMMS-04-2024-0106&rft_dat=%3Cproquest_emera%3E3119845731%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119845731&rft_id=info:pmid/&rfr_iscdi=true