Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM
PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inheren...
Gespeichert in:
Veröffentlicht in: | Multidiscipline modeling in materials and structures 2024-10, Vol.20 (6), p.973-994 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 994 |
---|---|
container_issue | 6 |
container_start_page | 973 |
container_title | Multidiscipline modeling in materials and structures |
container_volume | 20 |
creator | Sohail, Muhammad Rafique, Esha Abodayeh, Kamaleldin |
description | PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.Design/methodology/approachFollowing the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.FindingsRemarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.Originality/valueAvailable studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap. |
doi_str_mv | 10.1108/MMMS-04-2024-0106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_MMMS-04-2024-0106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119845731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-b9d35d60ac0e131d634bd46c41b8921a830b27e3d451bee82b4e6a87d301e72d3</originalsourceid><addsrcrecordid>eNptkUFu2zAQRYWgAeImPUB3BLpWyxFpSV66QRsHsJFFEmRJjMSxzYAiVZIKonP0AjlLTxa5DgIU6Gr-4v2_eJNln4F_BeD1t81mc5tzmRe8kDkHXp5kM5hXIi8BxIf3zOdn2ccYHzmXIMtqlv3-7genMYzM4kiBoUM7RhOZd6zDnaPk96MOXo8OO9MybWI0PSbzROzBWGuwixPq0PmtHYxmPcbE_NPfqT8v9Nx7Ry4ZtHZkMQVK7Z4mygc_RBb3RIk1IyO3w51xO3azWm4ustMt2kif3u55dv_zx93lKl_fXF1fLtd5C4sy5c1Ci7kuObacQIAuhWy0LFsJTb0oAGvBm6IioeUcGqK6aCSVWFdacKCq0OI8-3Lc7YP_NVBM6tEPYRIQlQBY1HJyBhMFR6oNPsZAW9UH003GFHB1cK8O7hWX6uBeHdxPHX7sUEcBrf5v5Z93iVeK2Ypj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119845731</pqid></control><display><type>article</type><title>Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Sohail, Muhammad ; Rafique, Esha ; Abodayeh, Kamaleldin</creator><creatorcontrib>Sohail, Muhammad ; Rafique, Esha ; Abodayeh, Kamaleldin</creatorcontrib><description>PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.Design/methodology/approachFollowing the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.FindingsRemarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.Originality/valueAvailable studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.</description><identifier>ISSN: 1573-6105</identifier><identifier>EISSN: 1573-6113</identifier><identifier>DOI: 10.1108/MMMS-04-2024-0106</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Boundary layers ; Brownian motion ; Chemical reactions ; Copper ; Dissipation ; Engineering ; Fluid dynamics ; Friction ; Graphical representations ; Heat conductivity ; Heat exchangers ; Heat transfer ; Investigations ; Magnetic fields ; Magnetic properties ; Microorganisms ; Nanofluids ; Nanoparticles ; Non Newtonian flow ; Non-Newtonian fluids ; Physical properties ; Porous media ; Qualitative analysis ; Slip velocity ; Temperature dependence ; Thermal conductivity ; Thermal energy ; Titanium ; Velocity</subject><ispartof>Multidiscipline modeling in materials and structures, 2024-10, Vol.20 (6), p.973-994</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-b9d35d60ac0e131d634bd46c41b8921a830b27e3d451bee82b4e6a87d301e72d3</cites><orcidid>0000-0003-0735-6520 ; 0000-0002-1490-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/MMMS-04-2024-0106/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,21674,27901,27902,53219</link.rule.ids></links><search><creatorcontrib>Sohail, Muhammad</creatorcontrib><creatorcontrib>Rafique, Esha</creatorcontrib><creatorcontrib>Abodayeh, Kamaleldin</creatorcontrib><title>Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM</title><title>Multidiscipline modeling in materials and structures</title><description>PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.Design/methodology/approachFollowing the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.FindingsRemarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.Originality/valueAvailable studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.</description><subject>Boundary layers</subject><subject>Brownian motion</subject><subject>Chemical reactions</subject><subject>Copper</subject><subject>Dissipation</subject><subject>Engineering</subject><subject>Fluid dynamics</subject><subject>Friction</subject><subject>Graphical representations</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Microorganisms</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Non Newtonian flow</subject><subject>Non-Newtonian fluids</subject><subject>Physical properties</subject><subject>Porous media</subject><subject>Qualitative analysis</subject><subject>Slip velocity</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Titanium</subject><subject>Velocity</subject><issn>1573-6105</issn><issn>1573-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkUFu2zAQRYWgAeImPUB3BLpWyxFpSV66QRsHsJFFEmRJjMSxzYAiVZIKonP0AjlLTxa5DgIU6Gr-4v2_eJNln4F_BeD1t81mc5tzmRe8kDkHXp5kM5hXIi8BxIf3zOdn2ccYHzmXIMtqlv3-7genMYzM4kiBoUM7RhOZd6zDnaPk96MOXo8OO9MybWI0PSbzROzBWGuwixPq0PmtHYxmPcbE_NPfqT8v9Nx7Ry4ZtHZkMQVK7Z4mygc_RBb3RIk1IyO3w51xO3azWm4ustMt2kif3u55dv_zx93lKl_fXF1fLtd5C4sy5c1Ci7kuObacQIAuhWy0LFsJTb0oAGvBm6IioeUcGqK6aCSVWFdacKCq0OI8-3Lc7YP_NVBM6tEPYRIQlQBY1HJyBhMFR6oNPsZAW9UH003GFHB1cK8O7hWX6uBeHdxPHX7sUEcBrf5v5Z93iVeK2Ypj</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Sohail, Muhammad</creator><creator>Rafique, Esha</creator><creator>Abodayeh, Kamaleldin</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0735-6520</orcidid><orcidid>https://orcid.org/0000-0002-1490-0339</orcidid></search><sort><creationdate>20241028</creationdate><title>Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM</title><author>Sohail, Muhammad ; Rafique, Esha ; Abodayeh, Kamaleldin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-b9d35d60ac0e131d634bd46c41b8921a830b27e3d451bee82b4e6a87d301e72d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary layers</topic><topic>Brownian motion</topic><topic>Chemical reactions</topic><topic>Copper</topic><topic>Dissipation</topic><topic>Engineering</topic><topic>Fluid dynamics</topic><topic>Friction</topic><topic>Graphical representations</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Microorganisms</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Non Newtonian flow</topic><topic>Non-Newtonian fluids</topic><topic>Physical properties</topic><topic>Porous media</topic><topic>Qualitative analysis</topic><topic>Slip velocity</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Titanium</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohail, Muhammad</creatorcontrib><creatorcontrib>Rafique, Esha</creatorcontrib><creatorcontrib>Abodayeh, Kamaleldin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Multidiscipline modeling in materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohail, Muhammad</au><au>Rafique, Esha</au><au>Abodayeh, Kamaleldin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM</atitle><jtitle>Multidiscipline modeling in materials and structures</jtitle><date>2024-10-28</date><risdate>2024</risdate><volume>20</volume><issue>6</issue><spage>973</spage><epage>994</epage><pages>973-994</pages><issn>1573-6105</issn><eissn>1573-6113</eissn><abstract>PurposeThis investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.Design/methodology/approachFollowing the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.FindingsRemarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.Originality/valueAvailable studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/MMMS-04-2024-0106</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0735-6520</orcidid><orcidid>https://orcid.org/0000-0002-1490-0339</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-6105 |
ispartof | Multidiscipline modeling in materials and structures, 2024-10, Vol.20 (6), p.973-994 |
issn | 1573-6105 1573-6113 |
language | eng |
recordid | cdi_emerald_primary_10_1108_MMMS-04-2024-0106 |
source | Standard: Emerald eJournal Premier Collection |
subjects | Boundary layers Brownian motion Chemical reactions Copper Dissipation Engineering Fluid dynamics Friction Graphical representations Heat conductivity Heat exchangers Heat transfer Investigations Magnetic fields Magnetic properties Microorganisms Nanofluids Nanoparticles Non Newtonian flow Non-Newtonian fluids Physical properties Porous media Qualitative analysis Slip velocity Temperature dependence Thermal conductivity Thermal energy Titanium Velocity |
title | Boundary layer analysis on magnetohydrodynamic dissipative Williamson nanofluid past over an exponentially stretched porous sheet by engaging OHAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20layer%20analysis%20on%20magnetohydrodynamic%20dissipative%20Williamson%20nanofluid%20past%20over%20an%C2%A0exponentially%20stretched%20porous%20sheet%20by%20engaging%20OHAM&rft.jtitle=Multidiscipline%20modeling%20in%20materials%20and%20structures&rft.au=Sohail,%20Muhammad&rft.date=2024-10-28&rft.volume=20&rft.issue=6&rft.spage=973&rft.epage=994&rft.pages=973-994&rft.issn=1573-6105&rft.eissn=1573-6113&rft_id=info:doi/10.1108/MMMS-04-2024-0106&rft_dat=%3Cproquest_emera%3E3119845731%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119845731&rft_id=info:pmid/&rfr_iscdi=true |