Dynamical analysis of hydromagnetic Brownian and thermophoresis effects of squeezing Eyring–Powell nanofluid flow with variable thermal conductivity and chemical reaction
Purpose The purpose of this paper is to investigate the dynamical behavior of heat and mass transfer of non-Newtonian nanofluid flow through parallel horizontal sheet with heat-dependent thermal conductivity and magnetic field. The effects of thermophoresis and Brownian motion on the Eyring‒Powell n...
Gespeichert in:
Veröffentlicht in: | Multidiscipline modeling in materials and structures 2019-11, Vol.15 (6), p.1100-1120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1120 |
---|---|
container_issue | 6 |
container_start_page | 1100 |
container_title | Multidiscipline modeling in materials and structures |
container_volume | 15 |
creator | Ogunseye, Hammed Abiodun Salawu, Sulyman Olakunle Tijani, Yusuf Olatunji Riliwan, Mustapha Sibanda, Precious |
description | Purpose
The purpose of this paper is to investigate the dynamical behavior of heat and mass transfer of non-Newtonian nanofluid flow through parallel horizontal sheet with heat-dependent thermal conductivity and magnetic field. The effects of thermophoresis and Brownian motion on the Eyring‒Powell nanofluid heat and concentration are also considered. The flow fluid is propelled by squeezing force and constant pressure gradient. The hydromagnetic fluid is induced by periodic time variations.
Design/methodology/approach
The dimensionless momentum, energy and species balance equations are solved by the spectral local linearization method that is employed to numerically integrate the coupled non-linear differential equations.
Findings
The response of the fluid flow, temperature and concentration to variational increase in the values of the parameters is graphically presented and discussed accordingly.
Originality/value
The validity of the method used was checked by comparing it with previous related article. |
doi_str_mv | 10.1108/MMMS-01-2019-0008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_MMMS-01-2019-0008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307133800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-95039b7ed6cbe2fe36a82668db0cc353adf56d76cd3264cedcbebeafc5f28f3e3</originalsourceid><addsrcrecordid>eNptkc9u1DAQhyMEEqXwANwscQ4dxxsne4TSf1JXIAFny7HHjSvHXuzsrtJT34HX6FP1Seo0CAmJ01jW95sZ-yuK9xQ-UgrtyWaz-V4CLSug6xIA2hfFEa0bVnJK2cu_Z6hfF29SugVY0RVvjoqHL5OXg1XSEemlm5JNJBjSTzqGQd54HK0in2M4eCt9RjQZe4xD2PYh4gyjMajG51D6tUO8s_6GnE0xl8f739_CAZ0jXvpg3M5qYlw4kIMde7KX0crO4dIwz1fB650a7d6O0_Mk1eOyWUSZ74N_W7wy0iV896ceFz_Pz36cXpbXXy-uTj9dl4rR1Viua2DrrkHNVYeVQcZlW3He6g6UYjWT2tRcN1xpVvGVQp2xDqVRtalaw5AdFx-WvtsY8pvSKG7DLubvSaJi0FDGWoBM0YVSMaQU0YhttIOMk6AgZililiKAilmKmKXkDCwZHDBKp_8b-ccjewIZvpXi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307133800</pqid></control><display><type>article</type><title>Dynamical analysis of hydromagnetic Brownian and thermophoresis effects of squeezing Eyring–Powell nanofluid flow with variable thermal conductivity and chemical reaction</title><source>Emerald A-Z Current Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Ogunseye, Hammed Abiodun ; Salawu, Sulyman Olakunle ; Tijani, Yusuf Olatunji ; Riliwan, Mustapha ; Sibanda, Precious</creator><creatorcontrib>Ogunseye, Hammed Abiodun ; Salawu, Sulyman Olakunle ; Tijani, Yusuf Olatunji ; Riliwan, Mustapha ; Sibanda, Precious</creatorcontrib><description>Purpose
The purpose of this paper is to investigate the dynamical behavior of heat and mass transfer of non-Newtonian nanofluid flow through parallel horizontal sheet with heat-dependent thermal conductivity and magnetic field. The effects of thermophoresis and Brownian motion on the Eyring‒Powell nanofluid heat and concentration are also considered. The flow fluid is propelled by squeezing force and constant pressure gradient. The hydromagnetic fluid is induced by periodic time variations.
Design/methodology/approach
The dimensionless momentum, energy and species balance equations are solved by the spectral local linearization method that is employed to numerically integrate the coupled non-linear differential equations.
Findings
The response of the fluid flow, temperature and concentration to variational increase in the values of the parameters is graphically presented and discussed accordingly.
Originality/value
The validity of the method used was checked by comparing it with previous related article.</description><identifier>ISSN: 1573-6105</identifier><identifier>EISSN: 1573-6113</identifier><identifier>DOI: 10.1108/MMMS-01-2019-0008</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Brownian motion ; Chemical reactions ; Compressing ; Computational fluid dynamics ; Fluid flow ; Heat ; Heat conductivity ; Heat transfer ; Influence ; Lubricants & lubrication ; Mass transfer ; Nanofluids ; Nanoparticles ; Non-Newtonian fluids ; Nonlinear equations ; Organic chemistry ; Researchers ; Rheology ; Studies ; Thermal conductivity ; Thermophoresis ; Thrust bearings ; Velocity ; Viscosity</subject><ispartof>Multidiscipline modeling in materials and structures, 2019-11, Vol.15 (6), p.1100-1120</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-95039b7ed6cbe2fe36a82668db0cc353adf56d76cd3264cedcbebeafc5f28f3e3</citedby><cites>FETCH-LOGICAL-c314t-95039b7ed6cbe2fe36a82668db0cc353adf56d76cd3264cedcbebeafc5f28f3e3</cites><orcidid>0000-0002-9127-7173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/MMMS-01-2019-0008/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>315,781,785,968,11637,21697,27926,27927,52691,53246</link.rule.ids></links><search><creatorcontrib>Ogunseye, Hammed Abiodun</creatorcontrib><creatorcontrib>Salawu, Sulyman Olakunle</creatorcontrib><creatorcontrib>Tijani, Yusuf Olatunji</creatorcontrib><creatorcontrib>Riliwan, Mustapha</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><title>Dynamical analysis of hydromagnetic Brownian and thermophoresis effects of squeezing Eyring–Powell nanofluid flow with variable thermal conductivity and chemical reaction</title><title>Multidiscipline modeling in materials and structures</title><description>Purpose
The purpose of this paper is to investigate the dynamical behavior of heat and mass transfer of non-Newtonian nanofluid flow through parallel horizontal sheet with heat-dependent thermal conductivity and magnetic field. The effects of thermophoresis and Brownian motion on the Eyring‒Powell nanofluid heat and concentration are also considered. The flow fluid is propelled by squeezing force and constant pressure gradient. The hydromagnetic fluid is induced by periodic time variations.
Design/methodology/approach
The dimensionless momentum, energy and species balance equations are solved by the spectral local linearization method that is employed to numerically integrate the coupled non-linear differential equations.
Findings
The response of the fluid flow, temperature and concentration to variational increase in the values of the parameters is graphically presented and discussed accordingly.
Originality/value
The validity of the method used was checked by comparing it with previous related article.</description><subject>Brownian motion</subject><subject>Chemical reactions</subject><subject>Compressing</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Influence</subject><subject>Lubricants & lubrication</subject><subject>Mass transfer</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Non-Newtonian fluids</subject><subject>Nonlinear equations</subject><subject>Organic chemistry</subject><subject>Researchers</subject><subject>Rheology</subject><subject>Studies</subject><subject>Thermal conductivity</subject><subject>Thermophoresis</subject><subject>Thrust bearings</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>1573-6105</issn><issn>1573-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc9u1DAQhyMEEqXwANwscQ4dxxsne4TSf1JXIAFny7HHjSvHXuzsrtJT34HX6FP1Seo0CAmJ01jW95sZ-yuK9xQ-UgrtyWaz-V4CLSug6xIA2hfFEa0bVnJK2cu_Z6hfF29SugVY0RVvjoqHL5OXg1XSEemlm5JNJBjSTzqGQd54HK0in2M4eCt9RjQZe4xD2PYh4gyjMajG51D6tUO8s_6GnE0xl8f739_CAZ0jXvpg3M5qYlw4kIMde7KX0crO4dIwz1fB650a7d6O0_Mk1eOyWUSZ74N_W7wy0iV896ceFz_Pz36cXpbXXy-uTj9dl4rR1Viua2DrrkHNVYeVQcZlW3He6g6UYjWT2tRcN1xpVvGVQp2xDqVRtalaw5AdFx-WvtsY8pvSKG7DLubvSaJi0FDGWoBM0YVSMaQU0YhttIOMk6AgZililiKAilmKmKXkDCwZHDBKp_8b-ccjewIZvpXi</recordid><startdate>20191104</startdate><enddate>20191104</enddate><creator>Ogunseye, Hammed Abiodun</creator><creator>Salawu, Sulyman Olakunle</creator><creator>Tijani, Yusuf Olatunji</creator><creator>Riliwan, Mustapha</creator><creator>Sibanda, Precious</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9127-7173</orcidid></search><sort><creationdate>20191104</creationdate><title>Dynamical analysis of hydromagnetic Brownian and thermophoresis effects of squeezing Eyring–Powell nanofluid flow with variable thermal conductivity and chemical reaction</title><author>Ogunseye, Hammed Abiodun ; Salawu, Sulyman Olakunle ; Tijani, Yusuf Olatunji ; Riliwan, Mustapha ; Sibanda, Precious</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-95039b7ed6cbe2fe36a82668db0cc353adf56d76cd3264cedcbebeafc5f28f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brownian motion</topic><topic>Chemical reactions</topic><topic>Compressing</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Influence</topic><topic>Lubricants & lubrication</topic><topic>Mass transfer</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Non-Newtonian fluids</topic><topic>Nonlinear equations</topic><topic>Organic chemistry</topic><topic>Researchers</topic><topic>Rheology</topic><topic>Studies</topic><topic>Thermal conductivity</topic><topic>Thermophoresis</topic><topic>Thrust bearings</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogunseye, Hammed Abiodun</creatorcontrib><creatorcontrib>Salawu, Sulyman Olakunle</creatorcontrib><creatorcontrib>Tijani, Yusuf Olatunji</creatorcontrib><creatorcontrib>Riliwan, Mustapha</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Multidiscipline modeling in materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogunseye, Hammed Abiodun</au><au>Salawu, Sulyman Olakunle</au><au>Tijani, Yusuf Olatunji</au><au>Riliwan, Mustapha</au><au>Sibanda, Precious</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical analysis of hydromagnetic Brownian and thermophoresis effects of squeezing Eyring–Powell nanofluid flow with variable thermal conductivity and chemical reaction</atitle><jtitle>Multidiscipline modeling in materials and structures</jtitle><date>2019-11-04</date><risdate>2019</risdate><volume>15</volume><issue>6</issue><spage>1100</spage><epage>1120</epage><pages>1100-1120</pages><issn>1573-6105</issn><eissn>1573-6113</eissn><abstract>Purpose
The purpose of this paper is to investigate the dynamical behavior of heat and mass transfer of non-Newtonian nanofluid flow through parallel horizontal sheet with heat-dependent thermal conductivity and magnetic field. The effects of thermophoresis and Brownian motion on the Eyring‒Powell nanofluid heat and concentration are also considered. The flow fluid is propelled by squeezing force and constant pressure gradient. The hydromagnetic fluid is induced by periodic time variations.
Design/methodology/approach
The dimensionless momentum, energy and species balance equations are solved by the spectral local linearization method that is employed to numerically integrate the coupled non-linear differential equations.
Findings
The response of the fluid flow, temperature and concentration to variational increase in the values of the parameters is graphically presented and discussed accordingly.
Originality/value
The validity of the method used was checked by comparing it with previous related article.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/MMMS-01-2019-0008</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9127-7173</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-6105 |
ispartof | Multidiscipline modeling in materials and structures, 2019-11, Vol.15 (6), p.1100-1120 |
issn | 1573-6105 1573-6113 |
language | eng |
recordid | cdi_emerald_primary_10_1108_MMMS-01-2019-0008 |
source | Emerald A-Z Current Journals; Standard: Emerald eJournal Premier Collection |
subjects | Brownian motion Chemical reactions Compressing Computational fluid dynamics Fluid flow Heat Heat conductivity Heat transfer Influence Lubricants & lubrication Mass transfer Nanofluids Nanoparticles Non-Newtonian fluids Nonlinear equations Organic chemistry Researchers Rheology Studies Thermal conductivity Thermophoresis Thrust bearings Velocity Viscosity |
title | Dynamical analysis of hydromagnetic Brownian and thermophoresis effects of squeezing Eyring–Powell nanofluid flow with variable thermal conductivity and chemical reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20analysis%20of%20hydromagnetic%20Brownian%20and%20thermophoresis%20effects%20of%20squeezing%20Eyring%E2%80%93Powell%20nanofluid%20flow%20with%20variable%20thermal%20conductivity%20and%20chemical%20reaction&rft.jtitle=Multidiscipline%20modeling%20in%20materials%20and%20structures&rft.au=Ogunseye,%20Hammed%20Abiodun&rft.date=2019-11-04&rft.volume=15&rft.issue=6&rft.spage=1100&rft.epage=1120&rft.pages=1100-1120&rft.issn=1573-6105&rft.eissn=1573-6113&rft_id=info:doi/10.1108/MMMS-01-2019-0008&rft_dat=%3Cproquest_emera%3E2307133800%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307133800&rft_id=info:pmid/&rfr_iscdi=true |