Geographical query reformulation using a geographical adjacency taxonomy builder and word senses
Purpose Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses. Design/methodology/appro...
Gespeichert in:
Veröffentlicht in: | Journal of systems and information technology 2021-06, Vol.23 (1), p.1-19 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of systems and information technology |
container_volume | 23 |
creator | El Midaoui, Omar El Ghali, Btihal El Qadi, Abderrahim Rahmani, Moulay Driss |
description | Purpose
Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses.
Design/methodology/approach
This work introduces an approach for GQR, which combines a method of query components separation that uses GeoNames, a technique for reformulating these components using WordNet and a geographic taxonomy constructed using the latent semantic analysis method.
Findings
The proposed approach was compared to two methods from the literature, using the mean average precision (MAP) and the precision at 20 documents (P@20). The experimental results show that it outperforms the other techniques by 15.73% to 31.21% in terms of P@20 and by 17.81% to 35.52% in terms of MAP.
Research limitations/implications
According to the experimental results, the best created taxonomy using the geographical adjacency taxonomy builder contains 7.67% of incorrect links. This paper believes that using a very big amount of data for taxonomy building can give better results. Thus, in future work, this paper intends to apply the approach in a big data context.
Originality/value
Despite this, the reformulation of geographical queries using the new proposed approach considerably improves the precision of queries and retrieves relevant documents that were not retrieved using the original queries. The strengths of the technique lie in the facts of reformulating both thematic and spatial entities and replacing the spatial entity of the query with terms that explain the intent of the query more precisely using a geographical taxonomy. |
doi_str_mv | 10.1108/JSIT-02-2018-0022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_JSIT-02-2018-0022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535762196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-7e47c6232bcf7fb194c26a6c89a97a52ae07ab9b44b703c9d161e133c84efde3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqXwA9gsMRv8kdjOiCooRZUYyG4ujlNSJXGxE0H-PYnKABLT3fA-d3ofhK4ZvWWM6rvn101OKCecMk0o5fwELZhKNdE6UafTLrgmisv0HF3EuKdUKpmwBXpbO78LcHivLTT4Y3BhxMFVPrRDA33tOzzEutthwLvfQSj3YF1nR9zDl-98O-JiqJvSBQxdiT99KHF0XXTxEp1V0ER39TOXKH98yFdPZPuy3qzut8QyzXqiXKKs5IIXtlJVwbLEcgnS6gwyBSkHRxUUWZEkhaLCZiWTzDEhrE5cVTqxRDfHs4fgpxaxN3s_hG76aHgqUiU5y-SUYseUDT7Gqac5hLqFMBpGzezRzB4N5Wb2aGaPE0OPjGtdgKb8F_mjXnwDz-B2UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535762196</pqid></control><display><type>article</type><title>Geographical query reformulation using a geographical adjacency taxonomy builder and word senses</title><source>Emerald Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>El Midaoui, Omar ; El Ghali, Btihal ; El Qadi, Abderrahim ; Rahmani, Moulay Driss</creator><creatorcontrib>El Midaoui, Omar ; El Ghali, Btihal ; El Qadi, Abderrahim ; Rahmani, Moulay Driss</creatorcontrib><description>Purpose
Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses.
Design/methodology/approach
This work introduces an approach for GQR, which combines a method of query components separation that uses GeoNames, a technique for reformulating these components using WordNet and a geographic taxonomy constructed using the latent semantic analysis method.
Findings
The proposed approach was compared to two methods from the literature, using the mean average precision (MAP) and the precision at 20 documents (P@20). The experimental results show that it outperforms the other techniques by 15.73% to 31.21% in terms of P@20 and by 17.81% to 35.52% in terms of MAP.
Research limitations/implications
According to the experimental results, the best created taxonomy using the geographical adjacency taxonomy builder contains 7.67% of incorrect links. This paper believes that using a very big amount of data for taxonomy building can give better results. Thus, in future work, this paper intends to apply the approach in a big data context.
Originality/value
Despite this, the reformulation of geographical queries using the new proposed approach considerably improves the precision of queries and retrieves relevant documents that were not retrieved using the original queries. The strengths of the technique lie in the facts of reformulating both thematic and spatial entities and replacing the spatial entity of the query with terms that explain the intent of the query more precisely using a geographical taxonomy.</description><identifier>ISSN: 1328-7265</identifier><identifier>EISSN: 1758-8847</identifier><identifier>DOI: 10.1108/JSIT-02-2018-0022</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Geography ; Information retrieval ; Ontology ; Queries ; Query expansion ; Retrieval performance measures ; Search engines ; Semantic web ; Semantics ; Taxonomy</subject><ispartof>Journal of systems and information technology, 2021-06, Vol.23 (1), p.1-19</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-7e47c6232bcf7fb194c26a6c89a97a52ae07ab9b44b703c9d161e133c84efde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/JSIT-02-2018-0022/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,21694,27923,27924,52688,53243</link.rule.ids></links><search><creatorcontrib>El Midaoui, Omar</creatorcontrib><creatorcontrib>El Ghali, Btihal</creatorcontrib><creatorcontrib>El Qadi, Abderrahim</creatorcontrib><creatorcontrib>Rahmani, Moulay Driss</creatorcontrib><title>Geographical query reformulation using a geographical adjacency taxonomy builder and word senses</title><title>Journal of systems and information technology</title><description>Purpose
Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses.
Design/methodology/approach
This work introduces an approach for GQR, which combines a method of query components separation that uses GeoNames, a technique for reformulating these components using WordNet and a geographic taxonomy constructed using the latent semantic analysis method.
Findings
The proposed approach was compared to two methods from the literature, using the mean average precision (MAP) and the precision at 20 documents (P@20). The experimental results show that it outperforms the other techniques by 15.73% to 31.21% in terms of P@20 and by 17.81% to 35.52% in terms of MAP.
Research limitations/implications
According to the experimental results, the best created taxonomy using the geographical adjacency taxonomy builder contains 7.67% of incorrect links. This paper believes that using a very big amount of data for taxonomy building can give better results. Thus, in future work, this paper intends to apply the approach in a big data context.
Originality/value
Despite this, the reformulation of geographical queries using the new proposed approach considerably improves the precision of queries and retrieves relevant documents that were not retrieved using the original queries. The strengths of the technique lie in the facts of reformulating both thematic and spatial entities and replacing the spatial entity of the query with terms that explain the intent of the query more precisely using a geographical taxonomy.</description><subject>Geography</subject><subject>Information retrieval</subject><subject>Ontology</subject><subject>Queries</subject><subject>Query expansion</subject><subject>Retrieval performance measures</subject><subject>Search engines</subject><subject>Semantic web</subject><subject>Semantics</subject><subject>Taxonomy</subject><issn>1328-7265</issn><issn>1758-8847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkD1PwzAQhi0EEqXwA9gsMRv8kdjOiCooRZUYyG4ujlNSJXGxE0H-PYnKABLT3fA-d3ofhK4ZvWWM6rvn101OKCecMk0o5fwELZhKNdE6UafTLrgmisv0HF3EuKdUKpmwBXpbO78LcHivLTT4Y3BhxMFVPrRDA33tOzzEutthwLvfQSj3YF1nR9zDl-98O-JiqJvSBQxdiT99KHF0XXTxEp1V0ER39TOXKH98yFdPZPuy3qzut8QyzXqiXKKs5IIXtlJVwbLEcgnS6gwyBSkHRxUUWZEkhaLCZiWTzDEhrE5cVTqxRDfHs4fgpxaxN3s_hG76aHgqUiU5y-SUYseUDT7Gqac5hLqFMBpGzezRzB4N5Wb2aGaPE0OPjGtdgKb8F_mjXnwDz-B2UA</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>El Midaoui, Omar</creator><creator>El Ghali, Btihal</creator><creator>El Qadi, Abderrahim</creator><creator>Rahmani, Moulay Driss</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20210604</creationdate><title>Geographical query reformulation using a geographical adjacency taxonomy builder and word senses</title><author>El Midaoui, Omar ; El Ghali, Btihal ; El Qadi, Abderrahim ; Rahmani, Moulay Driss</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-7e47c6232bcf7fb194c26a6c89a97a52ae07ab9b44b703c9d161e133c84efde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Geography</topic><topic>Information retrieval</topic><topic>Ontology</topic><topic>Queries</topic><topic>Query expansion</topic><topic>Retrieval performance measures</topic><topic>Search engines</topic><topic>Semantic web</topic><topic>Semantics</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Midaoui, Omar</creatorcontrib><creatorcontrib>El Ghali, Btihal</creatorcontrib><creatorcontrib>El Qadi, Abderrahim</creatorcontrib><creatorcontrib>Rahmani, Moulay Driss</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of systems and information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Midaoui, Omar</au><au>El Ghali, Btihal</au><au>El Qadi, Abderrahim</au><au>Rahmani, Moulay Driss</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographical query reformulation using a geographical adjacency taxonomy builder and word senses</atitle><jtitle>Journal of systems and information technology</jtitle><date>2021-06-04</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1328-7265</issn><eissn>1758-8847</eissn><abstract>Purpose
Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses.
Design/methodology/approach
This work introduces an approach for GQR, which combines a method of query components separation that uses GeoNames, a technique for reformulating these components using WordNet and a geographic taxonomy constructed using the latent semantic analysis method.
Findings
The proposed approach was compared to two methods from the literature, using the mean average precision (MAP) and the precision at 20 documents (P@20). The experimental results show that it outperforms the other techniques by 15.73% to 31.21% in terms of P@20 and by 17.81% to 35.52% in terms of MAP.
Research limitations/implications
According to the experimental results, the best created taxonomy using the geographical adjacency taxonomy builder contains 7.67% of incorrect links. This paper believes that using a very big amount of data for taxonomy building can give better results. Thus, in future work, this paper intends to apply the approach in a big data context.
Originality/value
Despite this, the reformulation of geographical queries using the new proposed approach considerably improves the precision of queries and retrieves relevant documents that were not retrieved using the original queries. The strengths of the technique lie in the facts of reformulating both thematic and spatial entities and replacing the spatial entity of the query with terms that explain the intent of the query more precisely using a geographical taxonomy.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/JSIT-02-2018-0022</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1328-7265 |
ispartof | Journal of systems and information technology, 2021-06, Vol.23 (1), p.1-19 |
issn | 1328-7265 1758-8847 |
language | eng |
recordid | cdi_emerald_primary_10_1108_JSIT-02-2018-0022 |
source | Emerald Journals; Standard: Emerald eJournal Premier Collection |
subjects | Geography Information retrieval Ontology Queries Query expansion Retrieval performance measures Search engines Semantic web Semantics Taxonomy |
title | Geographical query reformulation using a geographical adjacency taxonomy builder and word senses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographical%20query%20reformulation%20using%20a%20geographical%20adjacency%20taxonomy%20builder%20and%20word%20senses&rft.jtitle=Journal%20of%20systems%20and%20information%20technology&rft.au=El%20Midaoui,%20Omar&rft.date=2021-06-04&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1328-7265&rft.eissn=1758-8847&rft_id=info:doi/10.1108/JSIT-02-2018-0022&rft_dat=%3Cproquest_emera%3E2535762196%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535762196&rft_id=info:pmid/&rfr_iscdi=true |