Geographical query reformulation using a geographical adjacency taxonomy builder and word senses

Purpose Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses. Design/methodology/appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems and information technology 2021-06, Vol.23 (1), p.1-19
Hauptverfasser: El Midaoui, Omar, El Ghali, Btihal, El Qadi, Abderrahim, Rahmani, Moulay Driss
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 1
container_title Journal of systems and information technology
container_volume 23
creator El Midaoui, Omar
El Ghali, Btihal
El Qadi, Abderrahim
Rahmani, Moulay Driss
description Purpose Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses. Design/methodology/approach This work introduces an approach for GQR, which combines a method of query components separation that uses GeoNames, a technique for reformulating these components using WordNet and a geographic taxonomy constructed using the latent semantic analysis method. Findings The proposed approach was compared to two methods from the literature, using the mean average precision (MAP) and the precision at 20 documents (P@20). The experimental results show that it outperforms the other techniques by 15.73% to 31.21% in terms of P@20 and by 17.81% to 35.52% in terms of MAP. Research limitations/implications According to the experimental results, the best created taxonomy using the geographical adjacency taxonomy builder contains 7.67% of incorrect links. This paper believes that using a very big amount of data for taxonomy building can give better results. Thus, in future work, this paper intends to apply the approach in a big data context. Originality/value Despite this, the reformulation of geographical queries using the new proposed approach considerably improves the precision of queries and retrieves relevant documents that were not retrieved using the original queries. The strengths of the technique lie in the facts of reformulating both thematic and spatial entities and replacing the spatial entity of the query with terms that explain the intent of the query more precisely using a geographical taxonomy.
doi_str_mv 10.1108/JSIT-02-2018-0022
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_JSIT-02-2018-0022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535762196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-7e47c6232bcf7fb194c26a6c89a97a52ae07ab9b44b703c9d161e133c84efde3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqXwA9gsMRv8kdjOiCooRZUYyG4ujlNSJXGxE0H-PYnKABLT3fA-d3ofhK4ZvWWM6rvn101OKCecMk0o5fwELZhKNdE6UafTLrgmisv0HF3EuKdUKpmwBXpbO78LcHivLTT4Y3BhxMFVPrRDA33tOzzEutthwLvfQSj3YF1nR9zDl-98O-JiqJvSBQxdiT99KHF0XXTxEp1V0ER39TOXKH98yFdPZPuy3qzut8QyzXqiXKKs5IIXtlJVwbLEcgnS6gwyBSkHRxUUWZEkhaLCZiWTzDEhrE5cVTqxRDfHs4fgpxaxN3s_hG76aHgqUiU5y-SUYseUDT7Gqac5hLqFMBpGzezRzB4N5Wb2aGaPE0OPjGtdgKb8F_mjXnwDz-B2UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535762196</pqid></control><display><type>article</type><title>Geographical query reformulation using a geographical adjacency taxonomy builder and word senses</title><source>Emerald Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>El Midaoui, Omar ; El Ghali, Btihal ; El Qadi, Abderrahim ; Rahmani, Moulay Driss</creator><creatorcontrib>El Midaoui, Omar ; El Ghali, Btihal ; El Qadi, Abderrahim ; Rahmani, Moulay Driss</creatorcontrib><description>Purpose Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses. Design/methodology/approach This work introduces an approach for GQR, which combines a method of query components separation that uses GeoNames, a technique for reformulating these components using WordNet and a geographic taxonomy constructed using the latent semantic analysis method. Findings The proposed approach was compared to two methods from the literature, using the mean average precision (MAP) and the precision at 20 documents (P@20). The experimental results show that it outperforms the other techniques by 15.73% to 31.21% in terms of P@20 and by 17.81% to 35.52% in terms of MAP. Research limitations/implications According to the experimental results, the best created taxonomy using the geographical adjacency taxonomy builder contains 7.67% of incorrect links. This paper believes that using a very big amount of data for taxonomy building can give better results. Thus, in future work, this paper intends to apply the approach in a big data context. Originality/value Despite this, the reformulation of geographical queries using the new proposed approach considerably improves the precision of queries and retrieves relevant documents that were not retrieved using the original queries. The strengths of the technique lie in the facts of reformulating both thematic and spatial entities and replacing the spatial entity of the query with terms that explain the intent of the query more precisely using a geographical taxonomy.</description><identifier>ISSN: 1328-7265</identifier><identifier>EISSN: 1758-8847</identifier><identifier>DOI: 10.1108/JSIT-02-2018-0022</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Geography ; Information retrieval ; Ontology ; Queries ; Query expansion ; Retrieval performance measures ; Search engines ; Semantic web ; Semantics ; Taxonomy</subject><ispartof>Journal of systems and information technology, 2021-06, Vol.23 (1), p.1-19</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-7e47c6232bcf7fb194c26a6c89a97a52ae07ab9b44b703c9d161e133c84efde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/JSIT-02-2018-0022/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,21694,27923,27924,52688,53243</link.rule.ids></links><search><creatorcontrib>El Midaoui, Omar</creatorcontrib><creatorcontrib>El Ghali, Btihal</creatorcontrib><creatorcontrib>El Qadi, Abderrahim</creatorcontrib><creatorcontrib>Rahmani, Moulay Driss</creatorcontrib><title>Geographical query reformulation using a geographical adjacency taxonomy builder and word senses</title><title>Journal of systems and information technology</title><description>Purpose Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses. Design/methodology/approach This work introduces an approach for GQR, which combines a method of query components separation that uses GeoNames, a technique for reformulating these components using WordNet and a geographic taxonomy constructed using the latent semantic analysis method. Findings The proposed approach was compared to two methods from the literature, using the mean average precision (MAP) and the precision at 20 documents (P@20). The experimental results show that it outperforms the other techniques by 15.73% to 31.21% in terms of P@20 and by 17.81% to 35.52% in terms of MAP. Research limitations/implications According to the experimental results, the best created taxonomy using the geographical adjacency taxonomy builder contains 7.67% of incorrect links. This paper believes that using a very big amount of data for taxonomy building can give better results. Thus, in future work, this paper intends to apply the approach in a big data context. Originality/value Despite this, the reformulation of geographical queries using the new proposed approach considerably improves the precision of queries and retrieves relevant documents that were not retrieved using the original queries. The strengths of the technique lie in the facts of reformulating both thematic and spatial entities and replacing the spatial entity of the query with terms that explain the intent of the query more precisely using a geographical taxonomy.</description><subject>Geography</subject><subject>Information retrieval</subject><subject>Ontology</subject><subject>Queries</subject><subject>Query expansion</subject><subject>Retrieval performance measures</subject><subject>Search engines</subject><subject>Semantic web</subject><subject>Semantics</subject><subject>Taxonomy</subject><issn>1328-7265</issn><issn>1758-8847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkD1PwzAQhi0EEqXwA9gsMRv8kdjOiCooRZUYyG4ujlNSJXGxE0H-PYnKABLT3fA-d3ofhK4ZvWWM6rvn101OKCecMk0o5fwELZhKNdE6UafTLrgmisv0HF3EuKdUKpmwBXpbO78LcHivLTT4Y3BhxMFVPrRDA33tOzzEutthwLvfQSj3YF1nR9zDl-98O-JiqJvSBQxdiT99KHF0XXTxEp1V0ER39TOXKH98yFdPZPuy3qzut8QyzXqiXKKs5IIXtlJVwbLEcgnS6gwyBSkHRxUUWZEkhaLCZiWTzDEhrE5cVTqxRDfHs4fgpxaxN3s_hG76aHgqUiU5y-SUYseUDT7Gqac5hLqFMBpGzezRzB4N5Wb2aGaPE0OPjGtdgKb8F_mjXnwDz-B2UA</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>El Midaoui, Omar</creator><creator>El Ghali, Btihal</creator><creator>El Qadi, Abderrahim</creator><creator>Rahmani, Moulay Driss</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20210604</creationdate><title>Geographical query reformulation using a geographical adjacency taxonomy builder and word senses</title><author>El Midaoui, Omar ; El Ghali, Btihal ; El Qadi, Abderrahim ; Rahmani, Moulay Driss</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-7e47c6232bcf7fb194c26a6c89a97a52ae07ab9b44b703c9d161e133c84efde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Geography</topic><topic>Information retrieval</topic><topic>Ontology</topic><topic>Queries</topic><topic>Query expansion</topic><topic>Retrieval performance measures</topic><topic>Search engines</topic><topic>Semantic web</topic><topic>Semantics</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Midaoui, Omar</creatorcontrib><creatorcontrib>El Ghali, Btihal</creatorcontrib><creatorcontrib>El Qadi, Abderrahim</creatorcontrib><creatorcontrib>Rahmani, Moulay Driss</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of systems and information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Midaoui, Omar</au><au>El Ghali, Btihal</au><au>El Qadi, Abderrahim</au><au>Rahmani, Moulay Driss</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographical query reformulation using a geographical adjacency taxonomy builder and word senses</atitle><jtitle>Journal of systems and information technology</jtitle><date>2021-06-04</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1328-7265</issn><eissn>1758-8847</eissn><abstract>Purpose Geographical query formulation is one of the key difficulties for users in search engines. The purpose of this study is to improve geographical search by proposing a novel geographical query reformulation (GQR) technique using a geographical taxonomy and word senses. Design/methodology/approach This work introduces an approach for GQR, which combines a method of query components separation that uses GeoNames, a technique for reformulating these components using WordNet and a geographic taxonomy constructed using the latent semantic analysis method. Findings The proposed approach was compared to two methods from the literature, using the mean average precision (MAP) and the precision at 20 documents (P@20). The experimental results show that it outperforms the other techniques by 15.73% to 31.21% in terms of P@20 and by 17.81% to 35.52% in terms of MAP. Research limitations/implications According to the experimental results, the best created taxonomy using the geographical adjacency taxonomy builder contains 7.67% of incorrect links. This paper believes that using a very big amount of data for taxonomy building can give better results. Thus, in future work, this paper intends to apply the approach in a big data context. Originality/value Despite this, the reformulation of geographical queries using the new proposed approach considerably improves the precision of queries and retrieves relevant documents that were not retrieved using the original queries. The strengths of the technique lie in the facts of reformulating both thematic and spatial entities and replacing the spatial entity of the query with terms that explain the intent of the query more precisely using a geographical taxonomy.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/JSIT-02-2018-0022</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1328-7265
ispartof Journal of systems and information technology, 2021-06, Vol.23 (1), p.1-19
issn 1328-7265
1758-8847
language eng
recordid cdi_emerald_primary_10_1108_JSIT-02-2018-0022
source Emerald Journals; Standard: Emerald eJournal Premier Collection
subjects Geography
Information retrieval
Ontology
Queries
Query expansion
Retrieval performance measures
Search engines
Semantic web
Semantics
Taxonomy
title Geographical query reformulation using a geographical adjacency taxonomy builder and word senses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographical%20query%20reformulation%20using%20a%20geographical%20adjacency%20taxonomy%20builder%20and%20word%20senses&rft.jtitle=Journal%20of%20systems%20and%20information%20technology&rft.au=El%20Midaoui,%20Omar&rft.date=2021-06-04&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1328-7265&rft.eissn=1758-8847&rft_id=info:doi/10.1108/JSIT-02-2018-0022&rft_dat=%3Cproquest_emera%3E2535762196%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535762196&rft_id=info:pmid/&rfr_iscdi=true