A Chinese nested named entity recognition approach using sequence labeling
Purpose This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the...
Gespeichert in:
Veröffentlicht in: | International journal of Web information systems 2023-07, Vol.19 (1), p.42-60 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | International journal of Web information systems |
container_volume | 19 |
creator | Chen, Maojian Luo, Xiong Shen, Hailun Huang, Ziyang Peng, Qiaojuan Yuan, Yuqi |
description | Purpose
This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the depth of nested entities present in the data set. With this approach, this study achieves remarkable performance in recognizing Chinese nested entities.
Design/methodology/approach
This study provides a framework for Chinese nested named entity recognition (NER) based on sequence labeling methods. Similar to existing approaches, the framework uses an advanced pre-training model as the backbone to extract semantic features from the text. Then a decoder comprising multiple conditional random field (CRF) algorithms is used to learn the associations between granularity labels. To minimize the need for manual intervention, the Jaya algorithm is used to optimize the number of CRF layers. Experimental results validate the effectiveness of the proposed approach, demonstrating its superior performance on both Chinese nested NER and flat NER tasks.
Findings
The experimental findings illustrate that the proposed methodology can achieve a remarkable 4.32% advancement in nested NER performance on the People’s Daily corpus compared to existing models.
Originality/value
This study explores a Chinese NER methodology based on the sequence labeling ideology for recognizing sophisticated Chinese nested entities with remarkable accuracy. |
doi_str_mv | 10.1108/IJWIS-04-2023-0070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_IJWIS-04-2023-0070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834873391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ca172b048f7c3f032ae9c8377c7821107b47e04bbef03a40a1f42527410e78033</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKt_wFPA8-rkQyd7LEVtS8GDiseQTWfbLdtsTbaH_ntTK4LgZWaYmXc-HsauBdwKAeZuOvuYvhagCwlSFQAIJ2wgUOscl_L0Nzb6nF2ktAZ4MEqUAzYb8fGqCZSIZ9PTgge3yZZC3_R7Hsl3y9D0TRe4225j5_yK71ITljzR546CJ966itqcuWRntWsTXf34IXt_enwbT4r5y_N0PJoXXgnsC-8Eygq0qdGrGpR0VHqjED0amZ_BSiOBrirKRafBiVrLe4laAKEBpYbs5jg3n5NPSL1dd7sY8korjdIGlSpF7pLHLh-7lCLVdhubjYt7K8AemNlvZha0PTCzB2ZZJI4i2lB07eJ_zR_O6gv2N20c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834873391</pqid></control><display><type>article</type><title>A Chinese nested named entity recognition approach using sequence labeling</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Chen, Maojian ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Peng, Qiaojuan ; Yuan, Yuqi</creator><creatorcontrib>Chen, Maojian ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Peng, Qiaojuan ; Yuan, Yuqi</creatorcontrib><description>Purpose
This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the depth of nested entities present in the data set. With this approach, this study achieves remarkable performance in recognizing Chinese nested entities.
Design/methodology/approach
This study provides a framework for Chinese nested named entity recognition (NER) based on sequence labeling methods. Similar to existing approaches, the framework uses an advanced pre-training model as the backbone to extract semantic features from the text. Then a decoder comprising multiple conditional random field (CRF) algorithms is used to learn the associations between granularity labels. To minimize the need for manual intervention, the Jaya algorithm is used to optimize the number of CRF layers. Experimental results validate the effectiveness of the proposed approach, demonstrating its superior performance on both Chinese nested NER and flat NER tasks.
Findings
The experimental findings illustrate that the proposed methodology can achieve a remarkable 4.32% advancement in nested NER performance on the People’s Daily corpus compared to existing models.
Originality/value
This study explores a Chinese NER methodology based on the sequence labeling ideology for recognizing sophisticated Chinese nested entities with remarkable accuracy.</description><identifier>ISSN: 1744-0084</identifier><identifier>EISSN: 1744-0092</identifier><identifier>EISSN: 1744-0084</identifier><identifier>DOI: 10.1108/IJWIS-04-2023-0070</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Algorithms ; Conditional random fields ; Datasets ; Deep learning ; Dictionaries ; Labeling ; Labels ; Methodology ; Methods ; Optimization ; Optimization algorithms ; Recognition ; Semantics ; Steel industry</subject><ispartof>International journal of Web information systems, 2023-07, Vol.19 (1), p.42-60</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ca172b048f7c3f032ae9c8377c7821107b47e04bbef03a40a1f42527410e78033</citedby><cites>FETCH-LOGICAL-c317t-ca172b048f7c3f032ae9c8377c7821107b47e04bbef03a40a1f42527410e78033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/IJWIS-04-2023-0070/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,21694,27923,27924,53243</link.rule.ids></links><search><creatorcontrib>Chen, Maojian</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Shen, Hailun</creatorcontrib><creatorcontrib>Huang, Ziyang</creatorcontrib><creatorcontrib>Peng, Qiaojuan</creatorcontrib><creatorcontrib>Yuan, Yuqi</creatorcontrib><title>A Chinese nested named entity recognition approach using sequence labeling</title><title>International journal of Web information systems</title><description>Purpose
This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the depth of nested entities present in the data set. With this approach, this study achieves remarkable performance in recognizing Chinese nested entities.
Design/methodology/approach
This study provides a framework for Chinese nested named entity recognition (NER) based on sequence labeling methods. Similar to existing approaches, the framework uses an advanced pre-training model as the backbone to extract semantic features from the text. Then a decoder comprising multiple conditional random field (CRF) algorithms is used to learn the associations between granularity labels. To minimize the need for manual intervention, the Jaya algorithm is used to optimize the number of CRF layers. Experimental results validate the effectiveness of the proposed approach, demonstrating its superior performance on both Chinese nested NER and flat NER tasks.
Findings
The experimental findings illustrate that the proposed methodology can achieve a remarkable 4.32% advancement in nested NER performance on the People’s Daily corpus compared to existing models.
Originality/value
This study explores a Chinese NER methodology based on the sequence labeling ideology for recognizing sophisticated Chinese nested entities with remarkable accuracy.</description><subject>Algorithms</subject><subject>Conditional random fields</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Labeling</subject><subject>Labels</subject><subject>Methodology</subject><subject>Methods</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Recognition</subject><subject>Semantics</subject><subject>Steel industry</subject><issn>1744-0084</issn><issn>1744-0092</issn><issn>1744-0084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkE1LAzEQhoMoWKt_wFPA8-rkQyd7LEVtS8GDiseQTWfbLdtsTbaH_ntTK4LgZWaYmXc-HsauBdwKAeZuOvuYvhagCwlSFQAIJ2wgUOscl_L0Nzb6nF2ktAZ4MEqUAzYb8fGqCZSIZ9PTgge3yZZC3_R7Hsl3y9D0TRe4225j5_yK71ITljzR546CJ966itqcuWRntWsTXf34IXt_enwbT4r5y_N0PJoXXgnsC-8Eygq0qdGrGpR0VHqjED0amZ_BSiOBrirKRafBiVrLe4laAKEBpYbs5jg3n5NPSL1dd7sY8korjdIGlSpF7pLHLh-7lCLVdhubjYt7K8AemNlvZha0PTCzB2ZZJI4i2lB07eJ_zR_O6gv2N20c</recordid><startdate>20230712</startdate><enddate>20230712</enddate><creator>Chen, Maojian</creator><creator>Luo, Xiong</creator><creator>Shen, Hailun</creator><creator>Huang, Ziyang</creator><creator>Peng, Qiaojuan</creator><creator>Yuan, Yuqi</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20230712</creationdate><title>A Chinese nested named entity recognition approach using sequence labeling</title><author>Chen, Maojian ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Peng, Qiaojuan ; Yuan, Yuqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ca172b048f7c3f032ae9c8377c7821107b47e04bbef03a40a1f42527410e78033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Conditional random fields</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Labeling</topic><topic>Labels</topic><topic>Methodology</topic><topic>Methods</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Recognition</topic><topic>Semantics</topic><topic>Steel industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Maojian</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Shen, Hailun</creatorcontrib><creatorcontrib>Huang, Ziyang</creatorcontrib><creatorcontrib>Peng, Qiaojuan</creatorcontrib><creatorcontrib>Yuan, Yuqi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of Web information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Maojian</au><au>Luo, Xiong</au><au>Shen, Hailun</au><au>Huang, Ziyang</au><au>Peng, Qiaojuan</au><au>Yuan, Yuqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Chinese nested named entity recognition approach using sequence labeling</atitle><jtitle>International journal of Web information systems</jtitle><date>2023-07-12</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>42</spage><epage>60</epage><pages>42-60</pages><issn>1744-0084</issn><eissn>1744-0092</eissn><eissn>1744-0084</eissn><abstract>Purpose
This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the depth of nested entities present in the data set. With this approach, this study achieves remarkable performance in recognizing Chinese nested entities.
Design/methodology/approach
This study provides a framework for Chinese nested named entity recognition (NER) based on sequence labeling methods. Similar to existing approaches, the framework uses an advanced pre-training model as the backbone to extract semantic features from the text. Then a decoder comprising multiple conditional random field (CRF) algorithms is used to learn the associations between granularity labels. To minimize the need for manual intervention, the Jaya algorithm is used to optimize the number of CRF layers. Experimental results validate the effectiveness of the proposed approach, demonstrating its superior performance on both Chinese nested NER and flat NER tasks.
Findings
The experimental findings illustrate that the proposed methodology can achieve a remarkable 4.32% advancement in nested NER performance on the People’s Daily corpus compared to existing models.
Originality/value
This study explores a Chinese NER methodology based on the sequence labeling ideology for recognizing sophisticated Chinese nested entities with remarkable accuracy.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/IJWIS-04-2023-0070</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-0084 |
ispartof | International journal of Web information systems, 2023-07, Vol.19 (1), p.42-60 |
issn | 1744-0084 1744-0092 1744-0084 |
language | eng |
recordid | cdi_emerald_primary_10_1108_IJWIS-04-2023-0070 |
source | Standard: Emerald eJournal Premier Collection |
subjects | Algorithms Conditional random fields Datasets Deep learning Dictionaries Labeling Labels Methodology Methods Optimization Optimization algorithms Recognition Semantics Steel industry |
title | A Chinese nested named entity recognition approach using sequence labeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Chinese%20nested%20named%20entity%20recognition%20approach%20using%20sequence%20labeling&rft.jtitle=International%20journal%20of%20Web%20information%20systems&rft.au=Chen,%20Maojian&rft.date=2023-07-12&rft.volume=19&rft.issue=1&rft.spage=42&rft.epage=60&rft.pages=42-60&rft.issn=1744-0084&rft.eissn=1744-0092&rft_id=info:doi/10.1108/IJWIS-04-2023-0070&rft_dat=%3Cproquest_emera%3E2834873391%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834873391&rft_id=info:pmid/&rfr_iscdi=true |