A Chinese nested named entity recognition approach using sequence labeling

Purpose This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of Web information systems 2023-07, Vol.19 (1), p.42-60
Hauptverfasser: Chen, Maojian, Luo, Xiong, Shen, Hailun, Huang, Ziyang, Peng, Qiaojuan, Yuan, Yuqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 42
container_title International journal of Web information systems
container_volume 19
creator Chen, Maojian
Luo, Xiong
Shen, Hailun
Huang, Ziyang
Peng, Qiaojuan
Yuan, Yuqi
description Purpose This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the depth of nested entities present in the data set. With this approach, this study achieves remarkable performance in recognizing Chinese nested entities. Design/methodology/approach This study provides a framework for Chinese nested named entity recognition (NER) based on sequence labeling methods. Similar to existing approaches, the framework uses an advanced pre-training model as the backbone to extract semantic features from the text. Then a decoder comprising multiple conditional random field (CRF) algorithms is used to learn the associations between granularity labels. To minimize the need for manual intervention, the Jaya algorithm is used to optimize the number of CRF layers. Experimental results validate the effectiveness of the proposed approach, demonstrating its superior performance on both Chinese nested NER and flat NER tasks. Findings The experimental findings illustrate that the proposed methodology can achieve a remarkable 4.32% advancement in nested NER performance on the People’s Daily corpus compared to existing models. Originality/value This study explores a Chinese NER methodology based on the sequence labeling ideology for recognizing sophisticated Chinese nested entities with remarkable accuracy.
doi_str_mv 10.1108/IJWIS-04-2023-0070
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_IJWIS-04-2023-0070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834873391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ca172b048f7c3f032ae9c8377c7821107b47e04bbef03a40a1f42527410e78033</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKt_wFPA8-rkQyd7LEVtS8GDiseQTWfbLdtsTbaH_ntTK4LgZWaYmXc-HsauBdwKAeZuOvuYvhagCwlSFQAIJ2wgUOscl_L0Nzb6nF2ktAZ4MEqUAzYb8fGqCZSIZ9PTgge3yZZC3_R7Hsl3y9D0TRe4225j5_yK71ITljzR546CJ966itqcuWRntWsTXf34IXt_enwbT4r5y_N0PJoXXgnsC-8Eygq0qdGrGpR0VHqjED0amZ_BSiOBrirKRafBiVrLe4laAKEBpYbs5jg3n5NPSL1dd7sY8korjdIGlSpF7pLHLh-7lCLVdhubjYt7K8AemNlvZha0PTCzB2ZZJI4i2lB07eJ_zR_O6gv2N20c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834873391</pqid></control><display><type>article</type><title>A Chinese nested named entity recognition approach using sequence labeling</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Chen, Maojian ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Peng, Qiaojuan ; Yuan, Yuqi</creator><creatorcontrib>Chen, Maojian ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Peng, Qiaojuan ; Yuan, Yuqi</creatorcontrib><description>Purpose This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the depth of nested entities present in the data set. With this approach, this study achieves remarkable performance in recognizing Chinese nested entities. Design/methodology/approach This study provides a framework for Chinese nested named entity recognition (NER) based on sequence labeling methods. Similar to existing approaches, the framework uses an advanced pre-training model as the backbone to extract semantic features from the text. Then a decoder comprising multiple conditional random field (CRF) algorithms is used to learn the associations between granularity labels. To minimize the need for manual intervention, the Jaya algorithm is used to optimize the number of CRF layers. Experimental results validate the effectiveness of the proposed approach, demonstrating its superior performance on both Chinese nested NER and flat NER tasks. Findings The experimental findings illustrate that the proposed methodology can achieve a remarkable 4.32% advancement in nested NER performance on the People’s Daily corpus compared to existing models. Originality/value This study explores a Chinese NER methodology based on the sequence labeling ideology for recognizing sophisticated Chinese nested entities with remarkable accuracy.</description><identifier>ISSN: 1744-0084</identifier><identifier>EISSN: 1744-0092</identifier><identifier>EISSN: 1744-0084</identifier><identifier>DOI: 10.1108/IJWIS-04-2023-0070</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Algorithms ; Conditional random fields ; Datasets ; Deep learning ; Dictionaries ; Labeling ; Labels ; Methodology ; Methods ; Optimization ; Optimization algorithms ; Recognition ; Semantics ; Steel industry</subject><ispartof>International journal of Web information systems, 2023-07, Vol.19 (1), p.42-60</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ca172b048f7c3f032ae9c8377c7821107b47e04bbef03a40a1f42527410e78033</citedby><cites>FETCH-LOGICAL-c317t-ca172b048f7c3f032ae9c8377c7821107b47e04bbef03a40a1f42527410e78033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/IJWIS-04-2023-0070/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,21694,27923,27924,53243</link.rule.ids></links><search><creatorcontrib>Chen, Maojian</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Shen, Hailun</creatorcontrib><creatorcontrib>Huang, Ziyang</creatorcontrib><creatorcontrib>Peng, Qiaojuan</creatorcontrib><creatorcontrib>Yuan, Yuqi</creatorcontrib><title>A Chinese nested named entity recognition approach using sequence labeling</title><title>International journal of Web information systems</title><description>Purpose This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the depth of nested entities present in the data set. With this approach, this study achieves remarkable performance in recognizing Chinese nested entities. Design/methodology/approach This study provides a framework for Chinese nested named entity recognition (NER) based on sequence labeling methods. Similar to existing approaches, the framework uses an advanced pre-training model as the backbone to extract semantic features from the text. Then a decoder comprising multiple conditional random field (CRF) algorithms is used to learn the associations between granularity labels. To minimize the need for manual intervention, the Jaya algorithm is used to optimize the number of CRF layers. Experimental results validate the effectiveness of the proposed approach, demonstrating its superior performance on both Chinese nested NER and flat NER tasks. Findings The experimental findings illustrate that the proposed methodology can achieve a remarkable 4.32% advancement in nested NER performance on the People’s Daily corpus compared to existing models. Originality/value This study explores a Chinese NER methodology based on the sequence labeling ideology for recognizing sophisticated Chinese nested entities with remarkable accuracy.</description><subject>Algorithms</subject><subject>Conditional random fields</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Labeling</subject><subject>Labels</subject><subject>Methodology</subject><subject>Methods</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Recognition</subject><subject>Semantics</subject><subject>Steel industry</subject><issn>1744-0084</issn><issn>1744-0092</issn><issn>1744-0084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkE1LAzEQhoMoWKt_wFPA8-rkQyd7LEVtS8GDiseQTWfbLdtsTbaH_ntTK4LgZWaYmXc-HsauBdwKAeZuOvuYvhagCwlSFQAIJ2wgUOscl_L0Nzb6nF2ktAZ4MEqUAzYb8fGqCZSIZ9PTgge3yZZC3_R7Hsl3y9D0TRe4225j5_yK71ITljzR546CJ966itqcuWRntWsTXf34IXt_enwbT4r5y_N0PJoXXgnsC-8Eygq0qdGrGpR0VHqjED0amZ_BSiOBrirKRafBiVrLe4laAKEBpYbs5jg3n5NPSL1dd7sY8korjdIGlSpF7pLHLh-7lCLVdhubjYt7K8AemNlvZha0PTCzB2ZZJI4i2lB07eJ_zR_O6gv2N20c</recordid><startdate>20230712</startdate><enddate>20230712</enddate><creator>Chen, Maojian</creator><creator>Luo, Xiong</creator><creator>Shen, Hailun</creator><creator>Huang, Ziyang</creator><creator>Peng, Qiaojuan</creator><creator>Yuan, Yuqi</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20230712</creationdate><title>A Chinese nested named entity recognition approach using sequence labeling</title><author>Chen, Maojian ; Luo, Xiong ; Shen, Hailun ; Huang, Ziyang ; Peng, Qiaojuan ; Yuan, Yuqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ca172b048f7c3f032ae9c8377c7821107b47e04bbef03a40a1f42527410e78033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Conditional random fields</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Labeling</topic><topic>Labels</topic><topic>Methodology</topic><topic>Methods</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Recognition</topic><topic>Semantics</topic><topic>Steel industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Maojian</creatorcontrib><creatorcontrib>Luo, Xiong</creatorcontrib><creatorcontrib>Shen, Hailun</creatorcontrib><creatorcontrib>Huang, Ziyang</creatorcontrib><creatorcontrib>Peng, Qiaojuan</creatorcontrib><creatorcontrib>Yuan, Yuqi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of Web information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Maojian</au><au>Luo, Xiong</au><au>Shen, Hailun</au><au>Huang, Ziyang</au><au>Peng, Qiaojuan</au><au>Yuan, Yuqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Chinese nested named entity recognition approach using sequence labeling</atitle><jtitle>International journal of Web information systems</jtitle><date>2023-07-12</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>42</spage><epage>60</epage><pages>42-60</pages><issn>1744-0084</issn><eissn>1744-0092</eissn><eissn>1744-0084</eissn><abstract>Purpose This study aims to introduce an innovative approach that uses a decoder with multiple layers to accurately identify Chinese nested entities across various nesting depths. To address potential human intervention, an advanced optimization algorithm is used to fine-tune the decoder based on the depth of nested entities present in the data set. With this approach, this study achieves remarkable performance in recognizing Chinese nested entities. Design/methodology/approach This study provides a framework for Chinese nested named entity recognition (NER) based on sequence labeling methods. Similar to existing approaches, the framework uses an advanced pre-training model as the backbone to extract semantic features from the text. Then a decoder comprising multiple conditional random field (CRF) algorithms is used to learn the associations between granularity labels. To minimize the need for manual intervention, the Jaya algorithm is used to optimize the number of CRF layers. Experimental results validate the effectiveness of the proposed approach, demonstrating its superior performance on both Chinese nested NER and flat NER tasks. Findings The experimental findings illustrate that the proposed methodology can achieve a remarkable 4.32% advancement in nested NER performance on the People’s Daily corpus compared to existing models. Originality/value This study explores a Chinese NER methodology based on the sequence labeling ideology for recognizing sophisticated Chinese nested entities with remarkable accuracy.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/IJWIS-04-2023-0070</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-0084
ispartof International journal of Web information systems, 2023-07, Vol.19 (1), p.42-60
issn 1744-0084
1744-0092
1744-0084
language eng
recordid cdi_emerald_primary_10_1108_IJWIS-04-2023-0070
source Standard: Emerald eJournal Premier Collection
subjects Algorithms
Conditional random fields
Datasets
Deep learning
Dictionaries
Labeling
Labels
Methodology
Methods
Optimization
Optimization algorithms
Recognition
Semantics
Steel industry
title A Chinese nested named entity recognition approach using sequence labeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Chinese%20nested%20named%20entity%20recognition%20approach%20using%20sequence%20labeling&rft.jtitle=International%20journal%20of%20Web%20information%20systems&rft.au=Chen,%20Maojian&rft.date=2023-07-12&rft.volume=19&rft.issue=1&rft.spage=42&rft.epage=60&rft.pages=42-60&rft.issn=1744-0084&rft.eissn=1744-0092&rft_id=info:doi/10.1108/IJWIS-04-2023-0070&rft_dat=%3Cproquest_emera%3E2834873391%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834873391&rft_id=info:pmid/&rfr_iscdi=true