Hardening model of severe plastically deformed AA2024 by high-pressure torsion

PurposeThis paper aims to evaluate the validity of bilinear hardening model to represent the stress flow of high-pressure torsion (HPT)-strengthened lightweight material, AA2024.Design/methodology/approachFinite-element HPT simulation was performed by applying a simultaneous prescribed displacement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of structural integrity 2020-08, Vol.11 (4), p.591-603
Hauptverfasser: Lamin, Fauziana, Mohd Ihsan, Ahmad Kamal Ariffin, Mohamed, Intan Fadhlina, Nuphairode, Cheeranan Krutsuwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 4
container_start_page 591
container_title International journal of structural integrity
container_volume 11
creator Lamin, Fauziana
Mohd Ihsan, Ahmad Kamal Ariffin
Mohamed, Intan Fadhlina
Nuphairode, Cheeranan Krutsuwan
description PurposeThis paper aims to evaluate the validity of bilinear hardening model to represent the stress flow of high-pressure torsion (HPT)-strengthened lightweight material, AA2024.Design/methodology/approachFinite-element HPT simulation was performed by applying a simultaneous prescribed displacement on the axial and rotational axis that is equivalent to 4 GPa pressure and 30° torsion. The material behaviour incorporates plasticity attributes with a bilinear constitutive equation that consists of elastic and tangent modulus.FindingsAs a result, the von Mises stress generated from the simulation is in good agreement with the experiment, indicating that the assumptions of plasticity properties applied for the FEM simulation model are acceptable. The model verification confirms the anticipated plasticity parameters’ effect on the generated von Mises stress. The disc centre also evidenced an insignificant stress increment due to the limited shear straining.Research limitations/implicationsA reliable hardening model would assist in understanding the stress flow associated with mechanical properties enhancement.Practical implicationsThe bilinear hardening model exhibits a satisfactory stress estimation. It simplifies the ideal strain variable hardening procedures and lessens the total computation time that is valuable in solving severe plastic deformation problems.Originality/valueAn integration of well-defined input parameters, concerning the hardening behaviour and the plasticity properties, contributes to the establishment of a validated HPT simulation model, particularly for AA2024. This study also proved that perfectly plastic behaviour is inappropriate to represent hardening in the HPT-strengthened materials due to the remarkable stress deviation from the experimental data.
doi_str_mv 10.1108/IJSI-10-2019-0102
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_IJSI-10-2019-0102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499019405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-6c454127b0b649a38c2ff3d8ec5be653bac001e40071012e44de19d00c0eb2373</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsGh_gLcFz6uzH8kmx1LUVooe1HPY7E7alCQbd1Oh_96EiiA4l5mB552Bh5AbDnecQ3a_fn5bMw5MAM8ZcBBnZMZ1olmeaXH-O6fqksxj3MNYUmSp1jPysjLBYVd3W9p6hw31FY34hQFp35g41NY0zZE6rHxo0dHFQoBQtDzSXb3dsT5gjIcRHnyIte-uyUVlmojzn35FPh4f3pcrtnl9Wi8XG2YlVwNLrUoUF7qEMlW5kZkVVSVdhjYpMU1kaSwARwWgOXCBSjnkuQOwgKWQWl6R29PdPvjPA8ah2PtD6MaXhVB5PnpQkIwUP1E2-BgDVkUf6taEY8GhmMwVk7lpmcwVk7kxA6cMthhM4_6N_JEtvwER1G3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499019405</pqid></control><display><type>article</type><title>Hardening model of severe plastically deformed AA2024 by high-pressure torsion</title><source>Emerald A-Z Current Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Lamin, Fauziana ; Mohd Ihsan, Ahmad Kamal Ariffin ; Mohamed, Intan Fadhlina ; Nuphairode, Cheeranan Krutsuwan</creator><creatorcontrib>Lamin, Fauziana ; Mohd Ihsan, Ahmad Kamal Ariffin ; Mohamed, Intan Fadhlina ; Nuphairode, Cheeranan Krutsuwan</creatorcontrib><description>PurposeThis paper aims to evaluate the validity of bilinear hardening model to represent the stress flow of high-pressure torsion (HPT)-strengthened lightweight material, AA2024.Design/methodology/approachFinite-element HPT simulation was performed by applying a simultaneous prescribed displacement on the axial and rotational axis that is equivalent to 4 GPa pressure and 30° torsion. The material behaviour incorporates plasticity attributes with a bilinear constitutive equation that consists of elastic and tangent modulus.FindingsAs a result, the von Mises stress generated from the simulation is in good agreement with the experiment, indicating that the assumptions of plasticity properties applied for the FEM simulation model are acceptable. The model verification confirms the anticipated plasticity parameters’ effect on the generated von Mises stress. The disc centre also evidenced an insignificant stress increment due to the limited shear straining.Research limitations/implicationsA reliable hardening model would assist in understanding the stress flow associated with mechanical properties enhancement.Practical implicationsThe bilinear hardening model exhibits a satisfactory stress estimation. It simplifies the ideal strain variable hardening procedures and lessens the total computation time that is valuable in solving severe plastic deformation problems.Originality/valueAn integration of well-defined input parameters, concerning the hardening behaviour and the plasticity properties, contributes to the establishment of a validated HPT simulation model, particularly for AA2024. This study also proved that perfectly plastic behaviour is inappropriate to represent hardening in the HPT-strengthened materials due to the remarkable stress deviation from the experimental data.</description><identifier>ISSN: 1757-9864</identifier><identifier>EISSN: 1757-9872</identifier><identifier>DOI: 10.1108/IJSI-10-2019-0102</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Axes of rotation ; Boundary conditions ; Constitutive equations ; Constitutive relationships ; Finite element method ; Hardening ; Mathematical models ; Mechanical properties ; Modulus of elasticity ; Parameters ; Plastic deformation ; Plastic properties ; Shear strain ; Simulation ; Tangent modulus ; Temperature effects</subject><ispartof>International journal of structural integrity, 2020-08, Vol.11 (4), p.591-603</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-6c454127b0b649a38c2ff3d8ec5be653bac001e40071012e44de19d00c0eb2373</citedby><cites>FETCH-LOGICAL-c314t-6c454127b0b649a38c2ff3d8ec5be653bac001e40071012e44de19d00c0eb2373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/IJSI-10-2019-0102/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,21695,27924,27925,52689,53244</link.rule.ids></links><search><creatorcontrib>Lamin, Fauziana</creatorcontrib><creatorcontrib>Mohd Ihsan, Ahmad Kamal Ariffin</creatorcontrib><creatorcontrib>Mohamed, Intan Fadhlina</creatorcontrib><creatorcontrib>Nuphairode, Cheeranan Krutsuwan</creatorcontrib><title>Hardening model of severe plastically deformed AA2024 by high-pressure torsion</title><title>International journal of structural integrity</title><description>PurposeThis paper aims to evaluate the validity of bilinear hardening model to represent the stress flow of high-pressure torsion (HPT)-strengthened lightweight material, AA2024.Design/methodology/approachFinite-element HPT simulation was performed by applying a simultaneous prescribed displacement on the axial and rotational axis that is equivalent to 4 GPa pressure and 30° torsion. The material behaviour incorporates plasticity attributes with a bilinear constitutive equation that consists of elastic and tangent modulus.FindingsAs a result, the von Mises stress generated from the simulation is in good agreement with the experiment, indicating that the assumptions of plasticity properties applied for the FEM simulation model are acceptable. The model verification confirms the anticipated plasticity parameters’ effect on the generated von Mises stress. The disc centre also evidenced an insignificant stress increment due to the limited shear straining.Research limitations/implicationsA reliable hardening model would assist in understanding the stress flow associated with mechanical properties enhancement.Practical implicationsThe bilinear hardening model exhibits a satisfactory stress estimation. It simplifies the ideal strain variable hardening procedures and lessens the total computation time that is valuable in solving severe plastic deformation problems.Originality/valueAn integration of well-defined input parameters, concerning the hardening behaviour and the plasticity properties, contributes to the establishment of a validated HPT simulation model, particularly for AA2024. This study also proved that perfectly plastic behaviour is inappropriate to represent hardening in the HPT-strengthened materials due to the remarkable stress deviation from the experimental data.</description><subject>Axes of rotation</subject><subject>Boundary conditions</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Finite element method</subject><subject>Hardening</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Parameters</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><subject>Shear strain</subject><subject>Simulation</subject><subject>Tangent modulus</subject><subject>Temperature effects</subject><issn>1757-9864</issn><issn>1757-9872</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkE1Lw0AQhhdRsGh_gLcFz6uzH8kmx1LUVooe1HPY7E7alCQbd1Oh_96EiiA4l5mB552Bh5AbDnecQ3a_fn5bMw5MAM8ZcBBnZMZ1olmeaXH-O6fqksxj3MNYUmSp1jPysjLBYVd3W9p6hw31FY34hQFp35g41NY0zZE6rHxo0dHFQoBQtDzSXb3dsT5gjIcRHnyIte-uyUVlmojzn35FPh4f3pcrtnl9Wi8XG2YlVwNLrUoUF7qEMlW5kZkVVSVdhjYpMU1kaSwARwWgOXCBSjnkuQOwgKWQWl6R29PdPvjPA8ah2PtD6MaXhVB5PnpQkIwUP1E2-BgDVkUf6taEY8GhmMwVk7lpmcwVk7kxA6cMthhM4_6N_JEtvwER1G3c</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Lamin, Fauziana</creator><creator>Mohd Ihsan, Ahmad Kamal Ariffin</creator><creator>Mohamed, Intan Fadhlina</creator><creator>Nuphairode, Cheeranan Krutsuwan</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20200810</creationdate><title>Hardening model of severe plastically deformed AA2024 by high-pressure torsion</title><author>Lamin, Fauziana ; Mohd Ihsan, Ahmad Kamal Ariffin ; Mohamed, Intan Fadhlina ; Nuphairode, Cheeranan Krutsuwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-6c454127b0b649a38c2ff3d8ec5be653bac001e40071012e44de19d00c0eb2373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Axes of rotation</topic><topic>Boundary conditions</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Finite element method</topic><topic>Hardening</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Parameters</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><topic>Shear strain</topic><topic>Simulation</topic><topic>Tangent modulus</topic><topic>Temperature effects</topic><toplevel>online_resources</toplevel><creatorcontrib>Lamin, Fauziana</creatorcontrib><creatorcontrib>Mohd Ihsan, Ahmad Kamal Ariffin</creatorcontrib><creatorcontrib>Mohamed, Intan Fadhlina</creatorcontrib><creatorcontrib>Nuphairode, Cheeranan Krutsuwan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>International journal of structural integrity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamin, Fauziana</au><au>Mohd Ihsan, Ahmad Kamal Ariffin</au><au>Mohamed, Intan Fadhlina</au><au>Nuphairode, Cheeranan Krutsuwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardening model of severe plastically deformed AA2024 by high-pressure torsion</atitle><jtitle>International journal of structural integrity</jtitle><date>2020-08-10</date><risdate>2020</risdate><volume>11</volume><issue>4</issue><spage>591</spage><epage>603</epage><pages>591-603</pages><issn>1757-9864</issn><eissn>1757-9872</eissn><abstract>PurposeThis paper aims to evaluate the validity of bilinear hardening model to represent the stress flow of high-pressure torsion (HPT)-strengthened lightweight material, AA2024.Design/methodology/approachFinite-element HPT simulation was performed by applying a simultaneous prescribed displacement on the axial and rotational axis that is equivalent to 4 GPa pressure and 30° torsion. The material behaviour incorporates plasticity attributes with a bilinear constitutive equation that consists of elastic and tangent modulus.FindingsAs a result, the von Mises stress generated from the simulation is in good agreement with the experiment, indicating that the assumptions of plasticity properties applied for the FEM simulation model are acceptable. The model verification confirms the anticipated plasticity parameters’ effect on the generated von Mises stress. The disc centre also evidenced an insignificant stress increment due to the limited shear straining.Research limitations/implicationsA reliable hardening model would assist in understanding the stress flow associated with mechanical properties enhancement.Practical implicationsThe bilinear hardening model exhibits a satisfactory stress estimation. It simplifies the ideal strain variable hardening procedures and lessens the total computation time that is valuable in solving severe plastic deformation problems.Originality/valueAn integration of well-defined input parameters, concerning the hardening behaviour and the plasticity properties, contributes to the establishment of a validated HPT simulation model, particularly for AA2024. This study also proved that perfectly plastic behaviour is inappropriate to represent hardening in the HPT-strengthened materials due to the remarkable stress deviation from the experimental data.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/IJSI-10-2019-0102</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1757-9864
ispartof International journal of structural integrity, 2020-08, Vol.11 (4), p.591-603
issn 1757-9864
1757-9872
language eng
recordid cdi_emerald_primary_10_1108_IJSI-10-2019-0102
source Emerald A-Z Current Journals; Standard: Emerald eJournal Premier Collection
subjects Axes of rotation
Boundary conditions
Constitutive equations
Constitutive relationships
Finite element method
Hardening
Mathematical models
Mechanical properties
Modulus of elasticity
Parameters
Plastic deformation
Plastic properties
Shear strain
Simulation
Tangent modulus
Temperature effects
title Hardening model of severe plastically deformed AA2024 by high-pressure torsion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardening%20model%20of%20severe%20plastically%20deformed%20AA2024%20by%20high-pressure%20torsion&rft.jtitle=International%20journal%20of%20structural%20integrity&rft.au=Lamin,%20Fauziana&rft.date=2020-08-10&rft.volume=11&rft.issue=4&rft.spage=591&rft.epage=603&rft.pages=591-603&rft.issn=1757-9864&rft.eissn=1757-9872&rft_id=info:doi/10.1108/IJSI-10-2019-0102&rft_dat=%3Cproquest_emera%3E2499019405%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499019405&rft_id=info:pmid/&rfr_iscdi=true