Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine

Purpose – The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. Design/methodology/approach – Large eddy simulations with four different models for the turbulent flow are used: a one-equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical methods for heat & fluid flow 2014-01, Vol.24 (2), p.325-341
Hauptverfasser: Obeidat, Anas, Schnipper, Teis, M. Ingvorsen, Kristian, Haider, Sajjad, Erik Meyer, Knud, Mayer, Stefan, H. Walther, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue 2
container_start_page 325
container_title International journal of numerical methods for heat & fluid flow
container_volume 24
creator Obeidat, Anas
Schnipper, Teis
M. Ingvorsen, Kristian
Haider, Sajjad
Erik Meyer, Knud
Mayer, Stefan
H. Walther, Jens
description Purpose – The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. Design/methodology/approach – Large eddy simulations with four different models for the turbulent flow are used: a one-equation model, a dynamic one-equation model, a localized dynamic one-equation model and a mixed-scale model. Simulations are carried out for two different geometries corresponding to 100 and 50 percent open scavenge ports. Findings – It is found that the mean tangential profile inside the cylinder changes qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement. Research limitations/implications – Considering the complexity of the real engine, the authors designed the engine model using the simplest configuration possible. The setup contains no moving parts, the combustion is neglected and the exhaust valve is discarded. Originality/value – Studying the flow in a simplified engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results.
doi_str_mv 10.1108/HFF-09-2011-0189
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_HFF-09-2011-0189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524414850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e7cc5a6d33d1a2a982ed31ac406c797f47e9bad4f0b9408a9674296898eee5a23</originalsourceid><addsrcrecordid>eNqFkU2LFDEQQIMoOK7ePQa8eIlb6c7nURZnVxjYi55DtlM9Zk13xqSbYf-9acaLIiwUBIr3AsUj5D2HT5yDub7b7xlY1gHnDLixL8iOa2mYkka-JDuwijMpe_uavKn1EQCkEmpH6sGXI1IM4YnWOK3JLzHPleaRLj-QxnlMK84DbotTrEue6SnXuEG0zcbUcywpzkc6pnxuBvV0ygETXc6Z1aXkn0hDxNo2OB_jjG_Jq9Gniu_-vFfk-_7Lt5s7dri__Xrz-cAGwe3CUA-D9Cr0feC-89Z0GHruBwFq0FaPQqN98EGM8GAFGG-VFp1VxhpElL7rr8jHy7-nkn-tWBc3xTpgSn7GvFbHtYYmgLHPo7ITggsjoaEf_kEf81rmdkijQNselBCNggs1lFxrwdGdSpx8eXIc3BbMtWAOrNuCuS1YU64vCk5YfAr_M_5K3P8GieKW4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507930644</pqid></control><display><type>article</type><title>Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine</title><source>Emerald Complete Journals</source><creator>Obeidat, Anas ; Schnipper, Teis ; M. Ingvorsen, Kristian ; Haider, Sajjad ; Erik Meyer, Knud ; Mayer, Stefan ; H. Walther, Jens</creator><creatorcontrib>Obeidat, Anas ; Schnipper, Teis ; M. Ingvorsen, Kristian ; Haider, Sajjad ; Erik Meyer, Knud ; Mayer, Stefan ; H. Walther, Jens</creatorcontrib><description>Purpose – The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. Design/methodology/approach – Large eddy simulations with four different models for the turbulent flow are used: a one-equation model, a dynamic one-equation model, a localized dynamic one-equation model and a mixed-scale model. Simulations are carried out for two different geometries corresponding to 100 and 50 percent open scavenge ports. Findings – It is found that the mean tangential profile inside the cylinder changes qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement. Research limitations/implications – Considering the complexity of the real engine, the authors designed the engine model using the simplest configuration possible. The setup contains no moving parts, the combustion is neglected and the exhaust valve is discarded. Originality/value – Studying the flow in a simplified engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results.</description><identifier>ISSN: 0961-5539</identifier><identifier>EISSN: 1758-6585</identifier><identifier>DOI: 10.1108/HFF-09-2011-0189</identifier><identifier>CODEN: INMFEM</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Aircraft ; Boundary conditions ; Cylinders ; Diesel engines ; Dynamics ; Energy ; Energy consumption ; Engineering ; Fluid flow ; Marine engines ; Marine propulsion ; Mathematical models ; Mechanical engineering ; Navier-Stokes equations ; Ports ; Reynolds number ; Scale models ; Simulation ; Studies ; Turbulence ; Turbulence models ; Turbulent flow ; Velocity ; Viscosity ; Vortices</subject><ispartof>International journal of numerical methods for heat &amp; fluid flow, 2014-01, Vol.24 (2), p.325-341</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e7cc5a6d33d1a2a982ed31ac406c797f47e9bad4f0b9408a9674296898eee5a23</citedby><cites>FETCH-LOGICAL-c419t-e7cc5a6d33d1a2a982ed31ac406c797f47e9bad4f0b9408a9674296898eee5a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-09-2011-0189/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-09-2011-0189/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><creatorcontrib>Obeidat, Anas</creatorcontrib><creatorcontrib>Schnipper, Teis</creatorcontrib><creatorcontrib>M. Ingvorsen, Kristian</creatorcontrib><creatorcontrib>Haider, Sajjad</creatorcontrib><creatorcontrib>Erik Meyer, Knud</creatorcontrib><creatorcontrib>Mayer, Stefan</creatorcontrib><creatorcontrib>H. Walther, Jens</creatorcontrib><title>Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine</title><title>International journal of numerical methods for heat &amp; fluid flow</title><description>Purpose – The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. Design/methodology/approach – Large eddy simulations with four different models for the turbulent flow are used: a one-equation model, a dynamic one-equation model, a localized dynamic one-equation model and a mixed-scale model. Simulations are carried out for two different geometries corresponding to 100 and 50 percent open scavenge ports. Findings – It is found that the mean tangential profile inside the cylinder changes qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement. Research limitations/implications – Considering the complexity of the real engine, the authors designed the engine model using the simplest configuration possible. The setup contains no moving parts, the combustion is neglected and the exhaust valve is discarded. Originality/value – Studying the flow in a simplified engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results.</description><subject>Aircraft</subject><subject>Boundary conditions</subject><subject>Cylinders</subject><subject>Diesel engines</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Marine engines</subject><subject>Marine propulsion</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Navier-Stokes equations</subject><subject>Ports</subject><subject>Reynolds number</subject><subject>Scale models</subject><subject>Simulation</subject><subject>Studies</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0961-5539</issn><issn>1758-6585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU2LFDEQQIMoOK7ePQa8eIlb6c7nURZnVxjYi55DtlM9Zk13xqSbYf-9acaLIiwUBIr3AsUj5D2HT5yDub7b7xlY1gHnDLixL8iOa2mYkka-JDuwijMpe_uavKn1EQCkEmpH6sGXI1IM4YnWOK3JLzHPleaRLj-QxnlMK84DbotTrEue6SnXuEG0zcbUcywpzkc6pnxuBvV0ygETXc6Z1aXkn0hDxNo2OB_jjG_Jq9Gniu_-vFfk-_7Lt5s7dri__Xrz-cAGwe3CUA-D9Cr0feC-89Z0GHruBwFq0FaPQqN98EGM8GAFGG-VFp1VxhpElL7rr8jHy7-nkn-tWBc3xTpgSn7GvFbHtYYmgLHPo7ITggsjoaEf_kEf81rmdkijQNselBCNggs1lFxrwdGdSpx8eXIc3BbMtWAOrNuCuS1YU64vCk5YfAr_M_5K3P8GieKW4w</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Obeidat, Anas</creator><creator>Schnipper, Teis</creator><creator>M. Ingvorsen, Kristian</creator><creator>Haider, Sajjad</creator><creator>Erik Meyer, Knud</creator><creator>Mayer, Stefan</creator><creator>H. Walther, Jens</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20140101</creationdate><title>Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine</title><author>Obeidat, Anas ; Schnipper, Teis ; M. Ingvorsen, Kristian ; Haider, Sajjad ; Erik Meyer, Knud ; Mayer, Stefan ; H. Walther, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e7cc5a6d33d1a2a982ed31ac406c797f47e9bad4f0b9408a9674296898eee5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aircraft</topic><topic>Boundary conditions</topic><topic>Cylinders</topic><topic>Diesel engines</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Marine engines</topic><topic>Marine propulsion</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Navier-Stokes equations</topic><topic>Ports</topic><topic>Reynolds number</topic><topic>Scale models</topic><topic>Simulation</topic><topic>Studies</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obeidat, Anas</creatorcontrib><creatorcontrib>Schnipper, Teis</creatorcontrib><creatorcontrib>M. Ingvorsen, Kristian</creatorcontrib><creatorcontrib>Haider, Sajjad</creatorcontrib><creatorcontrib>Erik Meyer, Knud</creatorcontrib><creatorcontrib>Mayer, Stefan</creatorcontrib><creatorcontrib>H. Walther, Jens</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obeidat, Anas</au><au>Schnipper, Teis</au><au>M. Ingvorsen, Kristian</au><au>Haider, Sajjad</au><au>Erik Meyer, Knud</au><au>Mayer, Stefan</au><au>H. Walther, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine</atitle><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>24</volume><issue>2</issue><spage>325</spage><epage>341</epage><pages>325-341</pages><issn>0961-5539</issn><eissn>1758-6585</eissn><coden>INMFEM</coden><abstract>Purpose – The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. Design/methodology/approach – Large eddy simulations with four different models for the turbulent flow are used: a one-equation model, a dynamic one-equation model, a localized dynamic one-equation model and a mixed-scale model. Simulations are carried out for two different geometries corresponding to 100 and 50 percent open scavenge ports. Findings – It is found that the mean tangential profile inside the cylinder changes qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement. Research limitations/implications – Considering the complexity of the real engine, the authors designed the engine model using the simplest configuration possible. The setup contains no moving parts, the combustion is neglected and the exhaust valve is discarded. Originality/value – Studying the flow in a simplified engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/HFF-09-2011-0189</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-5539
ispartof International journal of numerical methods for heat & fluid flow, 2014-01, Vol.24 (2), p.325-341
issn 0961-5539
1758-6585
language eng
recordid cdi_emerald_primary_10_1108_HFF-09-2011-0189
source Emerald Complete Journals
subjects Aircraft
Boundary conditions
Cylinders
Diesel engines
Dynamics
Energy
Energy consumption
Engineering
Fluid flow
Marine engines
Marine propulsion
Mathematical models
Mechanical engineering
Navier-Stokes equations
Ports
Reynolds number
Scale models
Simulation
Studies
Turbulence
Turbulence models
Turbulent flow
Velocity
Viscosity
Vortices
title Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20eddy%20simulations%20of%20the%20influence%20of%20piston%20position%20on%20the%20swirling%20flow%20in%20a%20model%20two-stroke%20diesel%20engine&rft.jtitle=International%20journal%20of%20numerical%20methods%20for%20heat%20&%20fluid%20flow&rft.au=Obeidat,%20Anas&rft.date=2014-01-01&rft.volume=24&rft.issue=2&rft.spage=325&rft.epage=341&rft.pages=325-341&rft.issn=0961-5539&rft.eissn=1758-6585&rft.coden=INMFEM&rft_id=info:doi/10.1108/HFF-09-2011-0189&rft_dat=%3Cproquest_emera%3E1524414850%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507930644&rft_id=info:pmid/&rfr_iscdi=true