Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine
Purpose – The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. Design/methodology/approach – Large eddy simulations with four different models for the turbulent flow are used: a one-equa...
Gespeichert in:
Veröffentlicht in: | International journal of numerical methods for heat & fluid flow 2014-01, Vol.24 (2), p.325-341 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 341 |
---|---|
container_issue | 2 |
container_start_page | 325 |
container_title | International journal of numerical methods for heat & fluid flow |
container_volume | 24 |
creator | Obeidat, Anas Schnipper, Teis M. Ingvorsen, Kristian Haider, Sajjad Erik Meyer, Knud Mayer, Stefan H. Walther, Jens |
description | Purpose
– The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine.
Design/methodology/approach
– Large eddy simulations with four different models for the turbulent flow are used: a one-equation model, a dynamic one-equation model, a localized dynamic one-equation model and a mixed-scale model. Simulations are carried out for two different geometries corresponding to 100 and 50 percent open scavenge ports.
Findings
– It is found that the mean tangential profile inside the cylinder changes qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement.
Research limitations/implications
– Considering the complexity of the real engine, the authors designed the engine model using the simplest configuration possible. The setup contains no moving parts, the combustion is neglected and the exhaust valve is discarded.
Originality/value
– Studying the flow in a simplified engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results. |
doi_str_mv | 10.1108/HFF-09-2011-0189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_HFF-09-2011-0189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524414850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e7cc5a6d33d1a2a982ed31ac406c797f47e9bad4f0b9408a9674296898eee5a23</originalsourceid><addsrcrecordid>eNqFkU2LFDEQQIMoOK7ePQa8eIlb6c7nURZnVxjYi55DtlM9Zk13xqSbYf-9acaLIiwUBIr3AsUj5D2HT5yDub7b7xlY1gHnDLixL8iOa2mYkka-JDuwijMpe_uavKn1EQCkEmpH6sGXI1IM4YnWOK3JLzHPleaRLj-QxnlMK84DbotTrEue6SnXuEG0zcbUcywpzkc6pnxuBvV0ygETXc6Z1aXkn0hDxNo2OB_jjG_Jq9Gniu_-vFfk-_7Lt5s7dri__Xrz-cAGwe3CUA-D9Cr0feC-89Z0GHruBwFq0FaPQqN98EGM8GAFGG-VFp1VxhpElL7rr8jHy7-nkn-tWBc3xTpgSn7GvFbHtYYmgLHPo7ITggsjoaEf_kEf81rmdkijQNselBCNggs1lFxrwdGdSpx8eXIc3BbMtWAOrNuCuS1YU64vCk5YfAr_M_5K3P8GieKW4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507930644</pqid></control><display><type>article</type><title>Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine</title><source>Emerald Complete Journals</source><creator>Obeidat, Anas ; Schnipper, Teis ; M. Ingvorsen, Kristian ; Haider, Sajjad ; Erik Meyer, Knud ; Mayer, Stefan ; H. Walther, Jens</creator><creatorcontrib>Obeidat, Anas ; Schnipper, Teis ; M. Ingvorsen, Kristian ; Haider, Sajjad ; Erik Meyer, Knud ; Mayer, Stefan ; H. Walther, Jens</creatorcontrib><description>Purpose
– The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine.
Design/methodology/approach
– Large eddy simulations with four different models for the turbulent flow are used: a one-equation model, a dynamic one-equation model, a localized dynamic one-equation model and a mixed-scale model. Simulations are carried out for two different geometries corresponding to 100 and 50 percent open scavenge ports.
Findings
– It is found that the mean tangential profile inside the cylinder changes qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement.
Research limitations/implications
– Considering the complexity of the real engine, the authors designed the engine model using the simplest configuration possible. The setup contains no moving parts, the combustion is neglected and the exhaust valve is discarded.
Originality/value
– Studying the flow in a simplified engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results.</description><identifier>ISSN: 0961-5539</identifier><identifier>EISSN: 1758-6585</identifier><identifier>DOI: 10.1108/HFF-09-2011-0189</identifier><identifier>CODEN: INMFEM</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Aircraft ; Boundary conditions ; Cylinders ; Diesel engines ; Dynamics ; Energy ; Energy consumption ; Engineering ; Fluid flow ; Marine engines ; Marine propulsion ; Mathematical models ; Mechanical engineering ; Navier-Stokes equations ; Ports ; Reynolds number ; Scale models ; Simulation ; Studies ; Turbulence ; Turbulence models ; Turbulent flow ; Velocity ; Viscosity ; Vortices</subject><ispartof>International journal of numerical methods for heat & fluid flow, 2014-01, Vol.24 (2), p.325-341</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e7cc5a6d33d1a2a982ed31ac406c797f47e9bad4f0b9408a9674296898eee5a23</citedby><cites>FETCH-LOGICAL-c419t-e7cc5a6d33d1a2a982ed31ac406c797f47e9bad4f0b9408a9674296898eee5a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-09-2011-0189/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-09-2011-0189/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><creatorcontrib>Obeidat, Anas</creatorcontrib><creatorcontrib>Schnipper, Teis</creatorcontrib><creatorcontrib>M. Ingvorsen, Kristian</creatorcontrib><creatorcontrib>Haider, Sajjad</creatorcontrib><creatorcontrib>Erik Meyer, Knud</creatorcontrib><creatorcontrib>Mayer, Stefan</creatorcontrib><creatorcontrib>H. Walther, Jens</creatorcontrib><title>Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine</title><title>International journal of numerical methods for heat & fluid flow</title><description>Purpose
– The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine.
Design/methodology/approach
– Large eddy simulations with four different models for the turbulent flow are used: a one-equation model, a dynamic one-equation model, a localized dynamic one-equation model and a mixed-scale model. Simulations are carried out for two different geometries corresponding to 100 and 50 percent open scavenge ports.
Findings
– It is found that the mean tangential profile inside the cylinder changes qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement.
Research limitations/implications
– Considering the complexity of the real engine, the authors designed the engine model using the simplest configuration possible. The setup contains no moving parts, the combustion is neglected and the exhaust valve is discarded.
Originality/value
– Studying the flow in a simplified engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results.</description><subject>Aircraft</subject><subject>Boundary conditions</subject><subject>Cylinders</subject><subject>Diesel engines</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Marine engines</subject><subject>Marine propulsion</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Navier-Stokes equations</subject><subject>Ports</subject><subject>Reynolds number</subject><subject>Scale models</subject><subject>Simulation</subject><subject>Studies</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0961-5539</issn><issn>1758-6585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU2LFDEQQIMoOK7ePQa8eIlb6c7nURZnVxjYi55DtlM9Zk13xqSbYf-9acaLIiwUBIr3AsUj5D2HT5yDub7b7xlY1gHnDLixL8iOa2mYkka-JDuwijMpe_uavKn1EQCkEmpH6sGXI1IM4YnWOK3JLzHPleaRLj-QxnlMK84DbotTrEue6SnXuEG0zcbUcywpzkc6pnxuBvV0ygETXc6Z1aXkn0hDxNo2OB_jjG_Jq9Gniu_-vFfk-_7Lt5s7dri__Xrz-cAGwe3CUA-D9Cr0feC-89Z0GHruBwFq0FaPQqN98EGM8GAFGG-VFp1VxhpElL7rr8jHy7-nkn-tWBc3xTpgSn7GvFbHtYYmgLHPo7ITggsjoaEf_kEf81rmdkijQNselBCNggs1lFxrwdGdSpx8eXIc3BbMtWAOrNuCuS1YU64vCk5YfAr_M_5K3P8GieKW4w</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Obeidat, Anas</creator><creator>Schnipper, Teis</creator><creator>M. Ingvorsen, Kristian</creator><creator>Haider, Sajjad</creator><creator>Erik Meyer, Knud</creator><creator>Mayer, Stefan</creator><creator>H. Walther, Jens</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20140101</creationdate><title>Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine</title><author>Obeidat, Anas ; Schnipper, Teis ; M. Ingvorsen, Kristian ; Haider, Sajjad ; Erik Meyer, Knud ; Mayer, Stefan ; H. Walther, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e7cc5a6d33d1a2a982ed31ac406c797f47e9bad4f0b9408a9674296898eee5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aircraft</topic><topic>Boundary conditions</topic><topic>Cylinders</topic><topic>Diesel engines</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Marine engines</topic><topic>Marine propulsion</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Navier-Stokes equations</topic><topic>Ports</topic><topic>Reynolds number</topic><topic>Scale models</topic><topic>Simulation</topic><topic>Studies</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obeidat, Anas</creatorcontrib><creatorcontrib>Schnipper, Teis</creatorcontrib><creatorcontrib>M. Ingvorsen, Kristian</creatorcontrib><creatorcontrib>Haider, Sajjad</creatorcontrib><creatorcontrib>Erik Meyer, Knud</creatorcontrib><creatorcontrib>Mayer, Stefan</creatorcontrib><creatorcontrib>H. Walther, Jens</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of numerical methods for heat & fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obeidat, Anas</au><au>Schnipper, Teis</au><au>M. Ingvorsen, Kristian</au><au>Haider, Sajjad</au><au>Erik Meyer, Knud</au><au>Mayer, Stefan</au><au>H. Walther, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine</atitle><jtitle>International journal of numerical methods for heat & fluid flow</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>24</volume><issue>2</issue><spage>325</spage><epage>341</epage><pages>325-341</pages><issn>0961-5539</issn><eissn>1758-6585</eissn><coden>INMFEM</coden><abstract>Purpose
– The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine.
Design/methodology/approach
– Large eddy simulations with four different models for the turbulent flow are used: a one-equation model, a dynamic one-equation model, a localized dynamic one-equation model and a mixed-scale model. Simulations are carried out for two different geometries corresponding to 100 and 50 percent open scavenge ports.
Findings
– It is found that the mean tangential profile inside the cylinder changes qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement.
Research limitations/implications
– Considering the complexity of the real engine, the authors designed the engine model using the simplest configuration possible. The setup contains no moving parts, the combustion is neglected and the exhaust valve is discarded.
Originality/value
– Studying the flow in a simplified engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/HFF-09-2011-0189</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-5539 |
ispartof | International journal of numerical methods for heat & fluid flow, 2014-01, Vol.24 (2), p.325-341 |
issn | 0961-5539 1758-6585 |
language | eng |
recordid | cdi_emerald_primary_10_1108_HFF-09-2011-0189 |
source | Emerald Complete Journals |
subjects | Aircraft Boundary conditions Cylinders Diesel engines Dynamics Energy Energy consumption Engineering Fluid flow Marine engines Marine propulsion Mathematical models Mechanical engineering Navier-Stokes equations Ports Reynolds number Scale models Simulation Studies Turbulence Turbulence models Turbulent flow Velocity Viscosity Vortices |
title | Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20eddy%20simulations%20of%20the%20influence%20of%20piston%20position%20on%20the%20swirling%20flow%20in%20a%20model%20two-stroke%20diesel%20engine&rft.jtitle=International%20journal%20of%20numerical%20methods%20for%20heat%20&%20fluid%20flow&rft.au=Obeidat,%20Anas&rft.date=2014-01-01&rft.volume=24&rft.issue=2&rft.spage=325&rft.epage=341&rft.pages=325-341&rft.issn=0961-5539&rft.eissn=1758-6585&rft.coden=INMFEM&rft_id=info:doi/10.1108/HFF-09-2011-0189&rft_dat=%3Cproquest_emera%3E1524414850%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507930644&rft_id=info:pmid/&rfr_iscdi=true |